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Abstract

This paper might have been subtitled “An algorithmicist looks at
no free lunch.”

We use simple adversary arguments to redevelop and explore some
of the no free lunch (NFL) theorems and perhaps extend them a lit-
tle. A second goal is to clarify the relationship of NFL theorems to
algorithm theory. In particular we claim that NFL puts much weaker
restrictions on the claims that an evolutionary algorithm can make
than does acceptance of the conjectures of traditional complexity the-
ory. And third we take a brief look at whether the notion of natural
evolution relates to optimization, and what if any the implications
of evolution are for computing. In this part, we mostly try to raise
questions concerning the validity of applying the genetic model to the
problem of optimization.

This 1s an informal paper — most of the information presented
is not formally proven, and is either “common knowledge” or formally
proven elsewhere. Some of the claims are intuitions based on experience
with algorithms, and in a more formal setting should be classified as
conjectures. The goal is not so much to develop theory, as it is to
perhaps persuade the reader to adopt a particular viewpoint.

1 Introduction

In the movie UHF, there is a marvelous scene that every computing scientist
should consider. As the camera slowly pans across a small park setting,
we hear a voice repeatedly asking “Is this it?” followed each time by the
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response “Nah!”. As the camera continues to pan, it picks up two men on
a park bench, one of them blind and holding a Rubik’s cube. He randomly
gives it a twist, then holds it up to his friend to repeat the question/answer
sequence yet again.

This is blind search. The searcher has a minimum of information, and
gets back a minimal amount of response in terms of information from the
environment. In the literature on diverse areas related to search, there
are numerous papers purporting to address the issue of a general problem
solver, no knowledge search engine, universal learning machines, arbitrary
representation evolvers, or other blind search mechanisms. In general, there
is an understandable desire to have a “magic bullet” algorithm that can solve
any problem. Of course, the results of Turing [23] already forbid this, but
still there seems to be a persistent belief that it should be possible to have
an algorithm that outperforms all others, or that we can somehow identify
an operator that will work to our advantage under any circumstances.

The No Free Lunch (NFL) theorems of Wolpert and Macready [24] point
out the inherent hopelessness of such beliefs. In fairness of course, few
researchers would be prepared to defend the complete generality of their
proposals if pressed. Still, these theorems have generated much controversy
throughout the Evolutionary Algorithms (EA) community in part because
not everyone seems willing to accept the full implications.

Although most researchers would readily accept that there must be some
regularity inherent in a function if an algorithm is going to make progress,
Wolpert and Macready make the further point that unless the operators of
the algorithm are correlated to those features, there is no reason to believe
the algorithm will do better than a random search. Yet when such operators
are evaluated, the description of the conditions under which the particular
operator or algorithm will succeed or fail is often slighted. For example, there
are numerous papers in conferences from the early years of GAs purporting
to show that two point crossover is better than one point, or that crossover
is more (or less) effective than mutation or that certain selection methods
outperform others, and so forth. These claims were often supported by
some type of global analysis (frequently based on the Schema Theorem) and
selected experiments on various test suites. The NFL theorems make it clear
that any such claim is inherently false unless it is coupled with a disclaimer
such as “under the prescribed assumptions” or “on the functions tested.”
In particular, no such claim can ever be made with respect to all possible
functions, or even sufliciently large classes of functions as we illustrate below.

There has been much debate [21] on the interpretation and meaning of



the no free lunch (NFL) theorems for search. Some of this has centered on
whether they are applicable to “real life” problems, some on the relationship
to standard complexity theory. This paper will it is hoped, serve three pur-
poses. First, it will present the NFL results using simple informal adversary
arguments that may be more intuitive, at least for those from an algorithms
background.

Second, we will attempt to make convincing, although informal argu-
ments to relate NFL to traditional complexity theory. Our view is that the
restrictions imposed by NFL are of much weaker impact than the claims of
algorithms theory based on conjectures such as that all the following are
proper inclusions

P C RP C NP C PSPACE

Finally, we present a short section on Myopic Search and the idea of
competitive edges; that is, search where we have partial information, but
not complete knowledge of the problem, and would be happy to make some
gain over known solutions. In some classes, the NFL theorems do not apply,
at least not in their full generality. We contend that it is here that research
on adaptive algorithms, incorporating as much knowledge as is available,
is most likely to be fruitful. We also speculate on the nature of natural
genetics from a computational search perspective, and ponder the somewhat
philosophical question of how life could arise despite the NFL theorems. In
particular, we contend that the fact that life evolved does not imply that
genetic search is an eflicient universal problem solver.

Part I
An Adversary Approach to NFL

2 Computational Models and Blind Search

Genetic algorithms (GAs) are often touted as “no prior knowledge” algo-
rithms. This means that we expect GAs to perform without special informa-
tion from the environment. Similar claims are often made for other adaptive
and evolutionary algorithms.

One computational model of this expectation is the following. An algo-
rithm A generates a binary string which is then evaluated by the environ-
ment £. This is the only means the algorithm has of communicating with



the environment. The environment acts as a black box, and so we refer to
this as the black box or blind search model. I suppose we could also call it
the “friend on a park bench model”. Since almost all computers in current
use are based on binary logic, the restriction to a domain of binary strings
will be enforced in practice as soon as we try to implement any optimization
algorithm, and so is not a significant restriction. For example, the anal-
ysis also applies to domains using larger alphabets, since larger alphabets
can and must be encoded using binary strings. The observations we make
will apply to any search algorithm, such as genetic algorithms, simulated
annealing, neural nets, hill climbers and many, many others.

The question arises, “is this a reasonable model to pit an algorithm
against?” Wolpert and Macready’s “no free lunch” theorem [24] answers
this question in the negative. They prove within a formal setting that all op-
timization algorithms have equivalent average behavior when pitted against
such a black box environment.

In this presentation, let us use a different approach to this theorem
based on a standard tool of complexity analysis, the adversary argument.
Adversaries are ideally suited to the black box model. We assume that an
adversary is sitting in the black box, and that each time an input is to
be evaluated the adversary chooses the value of the string. We may place
various constraints and conditions on the values the adversary can choose
to mimic various computational models we have in mind. However, the
important idea of an adversary is that it gets to choose its values at the
time the request is made; that is, the adversary constructs the function
being searched “on demand.”

For our version of the NFL, we consider the classes of functions Fp =
{f:S" = R}, where R is some finite discrete range and S = {0, 1}. We will
normally drop the subscript n. For this paper we will usually assume that
R has a total ordering, and that the objective of the search is to find some
string in S that is optimal under f. In order to ensure that the functions are
defined over all of S", we may insist in our model that the algorithm will
always eventually generate every binary string in the domain. See [24] for a
discussion of this restriction. The arguments below do not really depend on
this restriction. We use N = 2" for the number of different strings in S™.

In order to compare algorithms, we need a measure of performance for
any algorithm A on a function f, denoted M4 (f). We extend our notation
with M j (F) to mean the average performance over all functions in the class
F. In practice this measure may be the (expected) number of string evalu-
ations until an optimum string is generated, or some measure of goodness



of an approximation after a specified number of evaluations. Wolpert and
Macready consider the histogram of values seen after m distinct strings are
evaluated. The above measures are then derivable from the histogram. The
NFL states that the histogram, and thus any measure of performance based
on it is independent of the algorithm if all functions are considered equally

likely.

Observation: NFL(1): For all algorithms Ay, Ay, My (F) = My (F)
in the black box model.

Proof: Consider the following adversary. When & receives a string, if the
string has been previously evaluated, the adversary returns the previously
used value, otherwise it assigns a randomly generated value from R. Thus,
the sequence (histogram) of values observed is independent of the sequence
of generated strings, and so expectations are equal.

For any algorithm, the adversary process randomly generates a function
with equal probability from F (or a partial function if the algorithms do not
generate all possible strings and we only count up to the minimum number
generated), since the string-value pairs of the function are independently
and uniformly assigned. m

We let RE represent a random enumeration search; a search which gen-
erates n-bit strings in random order without repetition. Although this al-
gorithm is not practical to implement, it serves as a theoretical basis of
comparison. A practical algorithm, in the sense that it is easy to implement
even if not particularly efficient on any algorithm, is a cyclic (mod N) search
starting from a random initial point. This cyclic algorithm has the property
that it uses the same expected number of string evaluations to find the op-
timum as RE against any adversary, even if the adversary is restricted to a
single function.

An immediate corollary of the NFL is that all algorithms are equal to
RE under the blind search model of computation.

We can refine the NFL theorem by noting that even if we constrain the
adversary to make its selections from R without repetition the proof still
holds. Thus, even if we restrict Fp, to bijections and R = [1,2,...,2"], we
can do no better than a random enumeration on average.

In practice we may wish to restrict our attention to some subclass of
functions F C F. The following is immediate:

Observation: NFL(2): If My (F) < MRp(F) then My (F\F) >
MRpp(F\F).



Thus any algorithm which attempts to exploit some property of functions
in a subclass of F will be subject to deception for some other class, in the
sense that it will perform worse than random search. The situation is even
more bleak than this might seem to imply. Informally, let F 5 (&) be the class
of functions for which the optimal string is found (i.e. is in the histogram)
“on average” after (at most) £ string evaluations using algorithm A.

Observation: The proportion of bijections solved by any A with
expected efficiency £ is

FA© < o

Proof: (Informal) We use the same adversary as before. Since the value
sequence is independent of the string generation order, we need only note
that the claim is based simply on the fraction of runs in which the adversary
generates the optimal value within the first £ strings. m

This says for example that any algorithm that we wish to run in poly-
nomial (i.e. in n*) expected time can do so on only an exponentially small
(n*/2™) fraction of the set of all possible functions.

In summary, the basic problem is that to apply any algorithm to all
possible functions (or even all possible bijections on a restricted range) we
have to give the adversary far too much power. As a result, the adversary
is able to generate values for us that are completely independent of the
algorithm in use.

This power carries over even if we are only interested in marginal im-
provement, for example in a competitive random environment between two
or more algorithms. Since the adversaries generate the next values com-
pletely at random, it is irrelevant what method the algorithms use to gener-
ate their next strings. Who wins the next round is determined by the adver-
sary independently of the algorithms, provided they both generate strings
not previously seen.

3 The Futility of Blind Transformations of the En-
coding

Many papers discuss isomorphisms and transformations of functions and
search spaces, sometimes directly as for example in the use of Gray codings,
and sometimes in terms of alternative encodings.



Observation: If # : F — F is a bijection then for any A, M (H(F)) =
M (F).

We can conclude, for example as noted in [3], that applying Gray codes to
all the functions in F yields no improvement for any algorithm on average
over F. In fact, the notion is considerably tighter than that, because it
applies to any class F closed under H. For example, suppose we start with
some particular function, say one of the De Jong suite functions [14] and then
apply Gray codes to this function to obtain a new function. We may then
apply Gray codes to that function and so on, until eventually we obtain the
original De Jong function again. This must occur since Gray coding induces
a permutation on S™. As shown in [9], it will take 2[1°8271 < 25 iterations
to return to the initial function. On this set of less than 2n functions, the
average performance of any algorithm is unaffected by the application of
Gray coding.

It might be argued that for interesting functions, Gray coding will help a
GA. If we define interesting to mean a function for which Gray coding helps
a GA, then this statement is trivially true but pointless! Let us use a more
reasonable definition, one based on complexity, such as f is interesting if it
requires at most O(n?) work to evaluate any string. Then if F is the set
of functions generated by iterated Gray coding of any interesting function
f, by definition all functions in F are interesting because the iterated Gray
code can be applied in O(n?) time. Yet applying Gray coding to this class
does not on average have any effect, for a GA or any other algorithm.

One implication of these observations is that the blind application of
transformations of the encoding has no expectation of improved perfor-
mance. Another is that attempts to have the GA evolve encodings in order
to improve its performance are generally fruitless, unless there is some prop-
erty of the function class we are observing that correlates to the evolutionary
mechanism and we can show that this property is exploited by our algorithm.
This comment merits particular attention when we consider natural evolu-
tion, and the possibility that nature has evolved an effective search engine
in the form of bisexual exchange of DNA (although we seriously question
the notion of function optimization in this context).

4 Free Lunch Analysis: The Schema Theorem

Holland’s Schema Theorem [18] at one time was seen as the guiding light of
GA analysis and design, but now schema-bashing seems to be an accepted



art form in the GA community (see the references for example in the intro-
duction in [2]). The schema theorem, on binary strings, identifies subsets of
the binary strings which correspond to hyperplanes of the Hamming cube
(or equivalently similarity templates) as being important to canonical GA
performance. Roughly it says that, allowing for disruption and recreation
of schema due to the mutation and recombination operators, if we have an
infinite population then after each generation of the GA the proportion of
strings belonging to any such subset will increase in proportion to the ratio
of the average fitness of the subset relative to the population as a whole.

So why is this an attempt at a “Free Lunch”? Well, as a theorem it is
not; but if we try to apply it to the design of GAs or other algorithms in
the absence of other information about the function to be searched then it
is subject to failure for exactly the reasons outlined in the NFL theorems.
The problem is that decoupling the theorem from its assumptions, or from
the particulars of a specific algorithm, or from the particulars of a particular
function, all allow an adversary to falsify the predictions of the analysis.

In order to gain some insight consider the numerous other theorems
related to other subset systems over S” that are all equally valid. A cover of
a set S is a collection of subsets whose union includes every element in the
set. The number of covers of a set of N elements is given by the recurrence

8 )
_ 1 /N .

cv=d 2T T (De >0

1, i=0

Since for binary strings of length n the number of distinct strings is
N = 2" it follows that the number of covers grows approximately as

n
5 ~

For every cover there is a theorem similar to the schema theorem when
proscribed with the appropriate disruption and recombination probabilities.
Thus, the schema theorem is only one out of these super-exponentially many
equally valid theorems. Admittedly, some of the covers, such as the one
consisting of the single universal set, are rather trivial. But each theorem
being equally valid under its assumptions lays equal claim as a basis of
analysis and design for a proportional selection algorithm.

These theorems are mostly about the processes of selection and reproduc-
tion and yield only peripheral information about the effect of combinatorial
operators. These theorems are really only side effects of the fact that higher



valued strings are more likely to reproduce under this particular selection
mode. They do not tell us much about the design of search algorithms using
those operators and especially they do not tell us whether selection based
on relative fitness is a good idea for an arbitrary function, or a good idea
in conjunction with a particular set of combinatorial operators. As Wolpert
and Macready [24] point out, an algorithm that moves downhill is just as
good on average as one that moves uphill. Trying to apply any of these
theorems as a design tool in the absence of specific information is trying to
get a free lunch.

Part 11
Complexity Theory and NFL

In their two related papers [24, 20], and in particular in section 5 of the
latter, Wolpert and Macready discuss the relationship of their NFL results
to standard complexity. However, their discussion is somewhat misleading
and contains some inaccuracies.

In this part of the paper we present an alternative viewpoint.

5 Laws of the Computational Universe

In physics there is the law of conservation of matter and energy, in chem-
istry there are the laws of thermodynamics and in computing science there
is a similar law known as Church’s thesis based on an observation made by
Alonzo Church in 1936(See [6] or [22] for an exposition). In today’s ter-
minology, this “law” says roughly that any algorithm that can be specified
by a human and carried out on any conceivable realistic computer can also
be programmed on a Turing machine (TM). Note that there is no way to
prove such a claim, just as there is no way to prove that physical law ap-
plies throughout the universe. But all sufficiently powerful formal models
abstracting the notion of what it means to do computation have been shown
to be formally equivalent to TMs in the strong sense that each can emulate
all the others.

Turing machines occupy a role in computation similar to the roles within
the physical sciences occupied by ideal gases, black box radiators and the
use of point mass representations in the computation of planetary orbits.
A TM is an abstraction of the fundamental qualities of any computational



process. A TM may not be physically realizable, in the sense that we have no
way of providing infinite memory, but still any limitation resulting from the
inherent properties of TM’s represents at least the same limitation on real
computers. For example, there are many problems including the infamous
Halting problem which can be proven to be unsolvable on a TM and thus
by implication of Church’s thesis on any conceivable computational device.

A TM is a mathematical model of computation which consists of a finite
state machine, or intuitively a program, and an infinite read/write tape
device. At each time step the program reads one input character from the
tape, changes state, writes out one symbol to the tape, and moves the tape
read /write head one step right or left. Initially the machine starts in a
special start up state with the tape head on tape cell number one. The
input resides on the first few tape cells (as many as are needed) and the
remainder of the tape is initially blank.

The TM might seem at first glance to be too simple to represent all
feasible computations and it may not seem to look much like a modern
computer with its internal memory, 1/O ports and so on. So let us present a
second model (see [1]) known as a RASP, or Random Access Stored Program
model of computation. In this model we are allowed an (infinite) array of
memory cells, the program is stored in the memory along with its input,
and the program is run by a fixed CPU with a simple instruction set and a
program counter. In other words, the RASP looks a lot like a very simplified
desk top computer.

Now, the key insight is that each of these models can be represented as
a simple mathematical system. These in turn can each be represented as a
fixed program on either of the machines which take as input the description
of a machine program and its input and will emulate, or run these programs
in exact faithfulness to its intended machine. This is no different in principle
than running an emulator for an IBM PC on a Maclntosh in order for
example to run Windows 95.

Finally, it is an easy exercise to write a Turing Machine emulator on
your favorite personal computer despite claims [24] it is not “physically
realizable”. Now of course you will not be able to provide an infinite tape but
you can do the following. Let the program store the tape representation on
diskettes. For a few billion dollars you will be able to provide lots of memory
to the machine. If you have ever attempted one of those installations with
the “insert disk n” sequence of instructions, you will realize that it is possible
to emulate as close to infinity as you will have the patience to endure. This
also illustrates that the requirement of having the remainder of the infinite
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tape initially blank is a mere mathematical convenience, since a realizable
alternative is to simply initialize memory as it is required.

We have departed somewhat from our objective of discussing the com-
plexity or efficiency of algorithms, since the topic of TMs and the Halting
Problem are really about what is computable. For complexity issues we are
no longer concerned about infinite resources, only the way in which resource
requirements increase as a function of input or problem size. In terms of
memory this is exactly our “diskette” model where the available hardware
resources are bounded by the available money. Since we no longer require
the TM to be infinite (except for mathematical convenience) the TM is
realizable for bounded (but arbitrary) sized problems.

The second resource we are interested in is execution time, which in our
abstract model is measured by the number of state transitions made by the
TM before it finishes.

It turns out that in fact a TM emulation will only increase the running
time of a RASP by a polynomial amount; in fact if the RASP uses T'(n)
time then the TM emulation will use approximately O(T>(n)) time. (See for
example figure 1.6 of [15]. A RAM is very much like a RASP, the difference
is discussed in [1].)

Thus, if a particular algorithm requires exponential time on a TM then
it will also require exponential time on a RASP, and if it can be implemented
in polynomial time on a RASP then it can be implemented in polynomial
time on a TM. The reader may wish to substitute “my favorite computer”
for RASP in the preceding statement.

Finally, we want to be clear that we are most concerned with classes
of problems, not classes of algorithms. For example, we might describe an
“optimization class” by requiring as input a description of a function, and
require as output an instance of the domain that maximizes the function.
This class is related to the very broad class addressed by the NFL. We will
return to this later, but first let us introduce two of the most famous problem
classes, P and NP.

For reasons of mathematical simplification these classes are both only
defined over decision problems; that is, problems whose answer is “yes” or
“no”. We will relate these to more general optimization versions of the
problems below when we discuss NP-easy and NP-hard classes.

The class P consists of all those decision problems for which there exists
an algorithm that can answer the query in polynomial time.

The term NP is an unfortunate acronym, due to historical development,
that is often confused by the uninitiated and incorrectly interpreted to mean
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“non-polynomial”. In fact, quite to the contrary NP refers to a class of
decision problems that have polynomial time solutions but on something
called a non-deterministic Turing machine(NDTM). Thus, NP stands for
“non-deterministic polynomial”. It is also important to note that “non-
deterministic” does not mean “random” or “probabilistic”. Furthermore,
we cannot implement a polynomial time non-deterministic TM, and in fact
that restriction is fundamental to the distinction between P and NP. If
we could implement this strange TM then we would have P=NP and our
conversation would stop. The purpose of the NDTM is solely to identify an
interesting class of problems.

Okay, a little confusion on the part of the reader at this point is under-
standable. Instead of NP the reader may wish to substitute the acronym
PV which we will define to mean “polynomially verifiable.” PV is the class
of decision problems for which all the instances having “yes” answers also
have example solutions with simple proofs that can be verified in polynomial
time.

The idea is that the classes P and PV basically capture the distinction
between the difficulty of solving a problem from scratch versus the difficulty
of checking that someone else’s solution is correct. A moments thought
should convince you that P must be a subset of PV since if we can solve the
problem easily from scratch, then to verify someone’s answer we can ignore
their proof and check our solution against theirs.

It turns out (see [4] for example) that PV = NP. It is undoubtedly too
late to change the name throughout the world but the reader is encouraged
to make the substitution of PV for NP while reading this document.

As an example, consider the infamous Traveling Salesperson Problem
(TSP). A problem instance consists of a set of cities, the distances between
the cities and a tour cost bound B. The yes/no question is “does there exist
a cyclic tour visiting each city exactly once with total cost at most B?”
To show that this belongs to NP, we need only note that if we are given a
particular tour then it is easy to run through it and compute the total cost
and then compare whether this cost meets the bound B. It is this algorithm
for verification that defines which problems are members of NP.

The unproven assumption underlying almost all of complexity theory is
that the inclusion P C NP is proper; that is, that there are problems which
can be easily verified given a solution but which cannot be easily solved in
the absence of a solution. In this context “easy” means there is a polynomial
time algorithm while “hard” means that the best possible algorithm will be
exponential.
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It also turns out that TSP is a member of a particular subclass of NP,
called NP-complete. All the problems in this class have the property that
an algorithm which could solve any one of them in polynomial time could be
used as a subroutine to solve any other problem in NP in polynomial time.
In this sense these are the hardest problems in NP.

It is beyond the scope of this paper to even outline the proof but one
crucial feature needs to be mentioned. That is that the proof depends on
the verification algorithm. In order to use the (mythical) polynomial time
TSP algorithm (or algorithm for any other NP-complete problem) as a sub-
routine to solve an arbitrary problem in NP, the arbitrary problem must the
transformed into a different form. There is a standard method! for doing
this but this method requires the verification algorithm. We will see the
importance of this when we relate NFL to NP in the next section.

The conjecture, supported by many years of research that so far has
failed to find any counter example, is that P is not equal to NP. Until shown
otherwise, it should be considered as a “law” of the computational universe
that no NP-complete problem has a polynomial time solution and any claim
to having a program be it GA or other, that efficiently “solves” an NP-
complete problem should be very carefully qualified. A claim that purports
to efficiently solve an NP-complete problem means the author is claiming
that P=NP and this requires a very formal proof. Otherwise, the claim
should be considered algorithmic nonsense.?

In particular, note that finding an optimal solution to a particular in-
stance of an NP-complete problem, or even on average over some distribu-
tion of instances does not solve the problem in general. It is well known
that many NP-complete problems have large classes of instances that can
be solved easily by simple algorithms. On the other hand, there are empiri-
cally identifiable subclasses that are extremely difficult even for randomized
algorithms, or for approximation algorithms. Before proclaiming the effi-
ciency of an algorithm, experimenters are urged to check their algorithms
on instances of these classes. In most cases it will prove to be a humbling
experience.

Now let us consider the corresponding TSP optimization problem: given
a set of cities and distances, what is the optimum cost tour? Notice that
if we could solve this problem then we could easily solve the correspond-

'The ‘method’ is reduction to SAT, see [15]

2There is some evidence that quantum computers may be able to polynomially solve
some problems not in P, but not NP-complete problems [4]. Practical quantum computers
have yet to be implemented.
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ing decision problem and so this problem must be as hard as the decision
problem. We say that the optimization version of an NP-complete prob-
lem is NP-hard. Everything we have said about the difficulty of solving
NP-complete problems applies also to NP-hard problems.

On the other hand suppose we had an algorithm to solve the TSP decision
problem efficiently. Now we can use the decision solver to find an optimal
TSP solution as follows. First we will generate any tour at random and
compute its cost T. We will then do a binary search to find the minimal
B in the range 1...7T for which there is a tour of cost B. At each step
we will ask the decision problem whether there is a tour of cost B. This
takes polynomial time. (Total cost O(p(n)log, T'), where p(n) is the cost of
solving the decision problem.) Having found the minimal B, we can find an
optimal tour as follows. For each pair of cities in turn change the intercity
cost to B4+ 1. Now ask whether there is a tour of cost B. If so then the edge
is not required in the optimal tour. Otherwise it is, and the cost has to be
reset to the original cost before the next step. In this way, we can solve the
TSP optimization problem if the decision problem is solvable in polynomial
time. For such cases we say the optimization problem is NP-easy.

It turns out that almost all of the interesting NP-hard optimization prob-
lems are also NP-easy. In other words, these optimization problems are, up
to a polynomial factor, equivalently as hard as solving any problem in NP.

Finally, one may get the impression from [24, 20] that because GAs or
other optimization techniques are randomized and may only be required
to give approximate solutions, they somehow escape the complexity theory
that has been developed. There are two responses to this notion.

First, there are numerous classes of problems that do include random-
ization as part of their description. For example, informally the class RP
allows for the input of a random stream of bits which can be used in the
algorithm in the same way that any pseudo-random number sequence is
used in a GA or other adaptive algorithm. This class includes all (decision)
problems that can be solved with probability better than 1/2 in polynomial
time. (The actual definition is a bit more technical - See [4]). This class
definitely includes all of P and is included in NP but it appears that NP-
complete problems are not included in RP. Until shown otherwise we may
assume that randomization cannot solve NP-complete problems.

Similarly, there are numerous results on approximations to NP-hard op-
timization problems. Recently for example it has been shown that unless
P=NP it is not possible to have a polynomial time algorithm that will ap-
proximate the graph coloring problem (next section) to within any constant
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factor. (In fact, for € < 1 it cannot be approximated to within O(n¢).)

One final class we mention in the next section needs a brief mention.
This is the class PSPACE with its attendant PSPACE-complete subset.
This is the class of problems which can be solved using only polynomial
memory. This includes NP as a subclass and again the inclusion is thought
to be proper. To get some intuition of what can be done in polynomial
space consider that the number of distinct states of a desk top computer
with 32 megabytes of memory is roughly 22°6000000 If 3 computer were to
step through all possible states at its maximum possible speed it would take
many times the current estimate of the age of the universe to finish.

6 Relating NFL to Standard Complexity Theory

We would like to relate blind search models to standard complexity classes
such as P, NP and PSPACE [15], and so to relate NFL-like consequences.
The NFL theorems allow a lot of freedom to the adversary generating the
functions. In particular, the adversary must have exponential space to store
the function values. (This is a direct consequence of Kolmogorov complex-
ity [19] — the “average” random or arbitrary function is not compressible.
That is, the shortest possible universal description is to list the function
values in order of some enumeration of the domain.) The adversary can
evaluate the strings in polynomial time however, since fast access of a string
can be done by storing the strings in a digital tree.

Suppose we restrict the adversary to polynomial space and time (the
space restriction seems to be more important). This enormously reduces
the set of functions that can be used against our algorithms. Clearly, most
“interesting” functions will still be in such a class, as well as many uninter-
esting functions.

Now, the question we would like an answer to is “Does the NFL theorem
apply to this restricted class?”. That is, does it still require exponential
time on average to optimize a function regardless of the algorithm applied.

Before answering this, let us consider some of the possible consequences
if the answer turns out to be yes. (Actually, to thwart those who jump
ahead to look for the answers, I don’t have an answer!)

We will consider a simple example problem that is known to be NP-hard
and thus strongly suspected of not being tractable. The problem we will
consider is the graph coloring problem. Given a graph G = (V, '), we are
asked to provide an optimal coloring of it. A c-coloring of a graph is an
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assignment of integers from the range [1..c] to the vertices of the graph so
that no two vertices which are joined by an edge have the same color. The
coloring problem is to find a coloring that minimizes c.

Being NP-hard means that we do not expect any algorithm to be able
to solve arbitrary instances of the graph coloring problem to optimality
in polynomial time. Of course, many classes of graphs can be colored in
polynomial time, or at least expected polynomial time, but there remain
subclasses that appear hard to all known algorithms [12, 10].

Now suppose we wish to set this problem in the context of our blind
search model. Note that for the usual definition of this problem we are
given as input the graph G and asked to find an optimal coloring of the
graph.

To cast this problem to the blind search model we need to describe a
function that is evaluated by the black box. One way of doing this, one that
also seems to be favored by many in the GA community[13], is to choose as
our function domain permutations of the set of vertices, and then have the
environment evaluate the permutation by coloring the permutation using
the simple greedy graph coloring algorithm.

The greedy algorithm takes the vertices in the given order and assigns
to each vertex in turn the minimal color that does not conflict with vertices
joined to it by an edge and already assigned a color. The reader is referred to
[11] for a more complete description of this algorithm and its performance.

The adversary must return an integer representing the number of colors
used by the greedy algorithm. In addition we may choose to require our
adversary to return the colors assigned to each vertex. Returning more
information is another way that an algorithm may be made stronger than
is allowed under the blind search model.

Note that if the graph has k vertices, then the length of a binary string
representing a permutation is n &~ klogk bits.

Note the following possible classifications with respect to “blindness” or
lack of knowledge:

1. Full knowledge: The algorithm knows G and thus is free to choose its
permutations taking into account the complete structure of the graph.

2. Partial Knowledge: The algorithm knows it is faced with a graph col-
oring problem on k£ nodes but the graph is hidden from the algorithm.
In this model, the adversary is free to make up the graph as it goes,
provided its colorings are consistent.
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3. Little Knowledge: The algorithm knows that it is faced with a prob-
lem from NP, and perhaps even that the n &~ klog k bits represent a
permutation of some domain, but it does not know which problem it
has.

4. Almost no Knowledge (Almost blind search): The algorithm knows
only that it is faced with minimizing a function from strings of length
n = klog k bits to some integer domain. We will grant that the adver-
sary is using only polynomial space and time to represent the function.

5. No Knowledge (Blind search): The algorithm knows only that it is
faced with a function from strings of length n = klogk bits to some
integer domain that must be minimized. This is just the blind search
class that the NFL theorems prove we cannot search with polynomial
efficiency.

In the first instance, the algorithm might for example use a sophisticated
backtrack algorithm to compute an optimal coloring, then send a permuta-
tion to the black box that generates that coloring under greedy. Thus, under
the black box model the algorithm runs in constant time since only one string
is evaluated.

The theory and conjectures of NP-completeness however, say that it is
unlikely that the actual computation required to find this string can be
carried out in less than exponential (in k) time. This is one of the senses in
which NFL-like theorems are much weaker than standard complexity theory,
although the NFL results are theorems while we confess that P£NP remains
a conjecture.

Intuitively, the second knowledge class restricts the power afforded an
algorithm, or equivalently extends more power to the adversary. Any al-
gorithm will only be able to choose permutations to send to the black box
based on previous evaluations. These evaluations may include color assign-
ments to the vertices as well as the number of colors used. Any information
about the structure of the graph will have to be inferred from the coloring
information returned.

However, it is likely closer to the model that many have in mind when
applying EAs to a problem. Some intelligent use can be made of the colors
returned since vertices of the same color must form independent sets of
vertices. An independent set is a set of vertices with no edge between any
pair. Thus, for example, recombination operators might try to preserve and
remix those independent sets. Such considerations led to the iterated greedy

17



algorithm described in [11]. (Originally, the iterated greedy algorithm grew
out of an attempt to apply a GA to coloring.)

The third knowledge class yields far more power to the adversary and
provides us an interesting comparison of NFL to the classes P, NP and RP.
If we could solve every problem in the third class in polynomial time with
a deterministic algorithm then we would have shown P = NP. If we could
solve any problem using a randomized algorithm then we would have NP =
RP (or reduce NP into BPP depending on the particulars. See e.g. [4] for
more information). Neither of these is considered likely.

However, there is a more subtle distinction to be made here. We know
that if any NP-complete problem could be solved in polynomial time then P
= NP or RP = NP depending on the nature of the solution as above. Does
this mean that the third knowledge class is equivalent in difficulty to the
NP-complete class?

Certainly, this class must be as hard as the NP-complete class. But,
solving an NP-complete problem either probabilistically or deterministically
would not appear to solve the third knowledge class. The reason is that
for a problem X to be in NP, X must come with a verification algorithm.
That is, in general there must be some method of specifying a solution
together with an algorithm that proves the solution whenever the instance
has a solution. For graph coloring for example, to prove that a graph is
k-colorable we need only specify a coloring of the graph, then it is easy to
write a polynomial time program to verify whether such a coloring is legal
and satisfies the constraints.

Given an arbitrary problem X in NP and a solver for some NP-complete
problem Y, the problem X can be solved by constructing an algorithm that
uses the Y-solver as a subroutine but the construction depends critically
upon having the verification program for X. On the other hand, in the
third knowledge class listed above, we do not know the exact problem so we
cannot have this certification program available.

The bottom line is that solving all problems in NP at once with a mostly
blind search is likely much harder than solving any specific NP-complete
problem. That is, mostly blind search is not only a much weaker approach
to solving a specific problem than is one using problem specific knowledge,
but also a weaker approach to solving NP in general.

In the fourth knowledge class, not only do we not know the problem
at hand, we have made an even weaker assumption as to the usual com-
plexity classes. The adversary is restricted to polynomial space in which to
record the function values. The space restriction is to disallow the adversary
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simply building a digital tree representation of the discrete domain, which
would allow an essentially arbitrary function to be constructed by randomly
choosing domain values on demand. Without this restriction, the adversary
would be very close in power to the adversary we used in our version of the
NFL theorems. This class not only includes all of NP, but apparently all of
PSPACE, and the associated optimization functions.

In summary, conjectures on the nature of NP and PSPACE suggest that
these problem classes are intractable. It is difficult to see how throwing
away information and enlarging the problem classes with which an algorithm
must cope can improve the search capabilities. The NFL theorems are much
weaker than usual complexity in the sense that the claims of difficulty are
made on much larger classes of problems. Or alternatively, the restrictions
on overall EA effectiveness implied by complexity theory are much more
severe than those implied by NFL.

Part III
So What?

7 On Genetics as a Universal Search Engine

3 If you take a LISP program and run it through your favorite C language
compiler, you will probably not get much in the way of useful output. If
you take a binary executable from an old 6502 based Apple computer and
try to run it on your 486 based PC, the machine will probably not respond.

Similarly, if you take a spoonful of raw DNA and dump it on the sidewalk,
the results will likely be less than spectacular. The universe as a general
rule simply does not know how to interpret DNA, anymore than it knows
how to interpret a punched paper tape without a teletype.* A DNA code
only has meaning within the context of an appropriate device, namely the
cell for which it is fitted. (Viruses, which get interpreted within someone
else’s device, can be thought of as being fitted to those devices.) This is one
of the themes explored by Cohen and Stewart [7].

FBiologists and others familiar with real genetic evolution may wish to take two aspirin
before reading this section. My apologies in advance for my superficial view of this science.

“Unlike the paper tape, the DNA may replicate when dumped on the sidewalk, if
temperature and other conditions are appropriate. But it is unlikely to produce a dinosaur
in the absence of an egg cell.
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Clearly, for evolution to have happened the interpretive device and the
code had to co-evolve. It seems entirely reasonable that quite different
devices might have evolved, and that quite different DNA sequences would
then have been required to be properly interpreted within them. Thus, it
seems intuitive that perhaps the DNA code we have is really quite arbitrary.

And now the rub. For if DNA coding is arbitrary, and if as Cohen
and Stewart [7] suggest, genetic evolution is a kind of computation over the
universe, then how, in the face of NFL, did it it ever get so far?

Note that we are talking about strings billions of characters in length.
And we are talking about a system where a single mutation may cause the
offspring, if it develops at all, to be completely ineffective. It would appear
that mutation is effectively doing a blind search when it arbitrarily modifies
DNA.

In fact it seems that nature believes that mutation is doing blind search
as well. According to a popular source [17], during human reproduction only
about one in a billion genes will undergo mutation. It seems that very com-
plex test and repair mechanisms within the DNA reproductive environment
keep the mutation rate exceedingly small.

So if mutation alone were responsible, generating a billion character
string one character at a time would take at least a billion generations,
which is considerably more than evolutionary history permits for humans.
“But”, the response comes back, “it is the recombination operators that
allow small pieces to be put together and form the really long sequences.”
So we invoke the NFL to argue that if the operators are blind there is no
reason to believe that crossover could do any better than mutation.

Yet, in contrast to mutation, nature not only allows crossover to operate
but seems to glory in it. Most higher species are divided into two distinct
sexes and an elaborate system has been established with the apparent sole
purpose of ensuring that every generation initiates the mixing of genetic
material for the next generation.

The only reasonable conclusion seems to be that nature does not see
crossover as a blind search operator.

8 Partial Information and Myopic Search

Let us revisit our two friends on a park bench trying to solve Rubik’s cube
in the introduction. Now let us suppose that instead of being blind, the
searcher is only perhaps color blind, or of very poor eyesight. In particular,
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notice that the searcher will know the general structure of the cube and its
basic operations. Also, let us suppose that the friend is a little less miserly in
the information he is willing to impart. Suppose the response to the queries
takes on the form “you have 5 red cells on the red face, 3 blue cells on the
blue face,..” and so on. In this way the searcher has more information to
guide his search. He may not know which face is the blue one, but as he
performs more probes, he will gain more insight and so be able to give his
search some direction.

For a simpler example, in the game of Mastermind [5], one player, call
her the adversary, hides some colored pegs under a little cover. The other
player, the searcher, makes probes by filling in a corresponding set of holes
with pegs. After each probe, the adversary tells the searcher how many pegs
match the color of the hidden pegs and how many matches are in the same
position. However, the adversary does not state which pegs or colors are
matched. Again, the searcher must use the partial information to generate
future probes that will provide maximal information. Notice that in a simple
variation the adversary could make up her answers in a consistent manner
after each probe, thus potentially increasing the number of probes required
to narrow the search until only one possible matching pattern remains.

Other games with partial information abound, and some are also stochas-
tically based, such as poker. Is there a place here for the use of adaptive
algorithms in search that is not quite blind but rather myopic?

Could it be that the reason that nature uses crossover is because it has
already learned that the things coded for in the segments of DNA over which
it allows crossover are useful? At first glance this appears to be a rather
strong form of the building block hypothesis [16] but the reader is cautioned
that DNA interpretation is not merely a matter of decoding linearly sepa-
rable bits of DNA. Rather there appear to be structural hierarchies within
DNA. For example, some segments can do things such as inhibit or activate
other segments.

One thing we should keep in mind is that the universe does not appear
“random” in the sense that all possibilities are equally likely. It does satisfy
quite strong natural laws, and in particular the earth seems to stay within
quite narrow bounds on variables such as climate, chemical composition and
S0 on.

So, assuming the absence of divine intervention, somehow nature started
with a nearly blind search. It slowly learned some chemical tricks, slowly
discovered they could be encoded into DNA, and then slowly began build-
ing devices for recombining the DNA sequences to provide ever better search
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strategies based on what it had learned so far. Mutational error rates went
down, as those systems allowing errors seldom survived. On the other hand,
recombination, because it was becoming ever better tuned with the repre-
sentation, was enhanced. Basically, crossover, inversion and other genetic
operations tended to mix sequences that already coded for something useful
within the device. Intuitively, mutation would tend not to.

If this picture is even remotely correct then part of the fitness of the
genes that DNA encodes must be their ability to continue to carry useful
information when mixed by the recombination operators. That is, not only
must the encoding device evolve with the DNA but more particularly so must
the operators. Once the search was no longer blind, that is as knowledge was
built into the search system, then evolution could be enormously speeded
up.

Now, if the operators are no longer blind but merely myopic, then they
can no longer have universal application. In a strong sense, since a search-
scape is in part defined by the operators and representation, the landscape
being searched by evolution must also be evolving along with the operators,
devices and DNA. But how can life continue to increase in fitness if the evo-
lution landscape has been restricted to some subset based on known tricks?
That is, if it has been to some extent decoupled from the background world
it is evolving in? This brings us to the next big question, which is “what, if
anything, is this fitness that evolution is supposed to increase?”

9 The Competitive Edge

Genetic search is not necessarily optimizing. It may only be competing in
local events.

For example, consider the following thought experiment. It would seem
that the best way to collect sunlight while minimizing overhead costs in
materials used would be to have a large flat leaf hugging the landscape.
Or perhaps, if not a single leaf, then something akin to a low cover of
moss. Trees are not close to optimal in this sense because they must invest
in a tremendous infrastructure and much of it will be shaded and so not
productive.

Nevertheless, nature seems to favor trees. The reason is not that they
can gather more sunlight (only so much hits the earth and the flat leaf could
get it all) but rather that they prevent flat leaves from getting any sunlight.
Thus, they have a competitive edge over flat leaves. In order to survive
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you only need to compete with those next to you. This is not necessarily
consistent with any global idea of optimization or fitness.

So, is it possible then that evolution is not optimizing at all? Could
it just be wandering around in some sort of empty-headed mutual bashing
contest?

And finally, is the application of the NFL, indeed of the computational
model to natural evolution meaningful, or mere sophistry?

10 Bad News/Good News

So what does all of this say about using genetic evolution as a model of
search in optimization settings? Basically it says that the faith in using a
GA as a blind search optimization engine is misplaced. It is based on an
understanding of genetic evolution that does not necessarily apply within a
computational optimization setting.

In other words, there is no reason to believe that a genetic algorithm will
be of any more general use than any other approach to optimization. And
in particular, if a GA is going to be used, then the user will have to perform
an analysis of the problem within the context of the GA and determine
operations and representations that are compatible with the problem and
will enhance the search. If heuristic methods are sufficient for the researchers
problem then again there is no a priori reason to choose a GA over other
standard heuristic programming methods that might lend themselves to the
problem at hand.

In fact, due to the complexity of interactions within a GA, this approach
may well be more difficult on average than simply trying to solve the problem
using conventional methods. With an evolutionary algorithm, the algorithm
itself represents something of a black box with complex internal interactions
between various operators and multitudes of parameter adjustments to the
system with no clear and detailed understanding of how they interact. The
researcher trying to solve a problem is then placed in the unfortunate po-
sition of having to find a representation, operators and parameter settings
to make a poorly understood system solve a poorly understood problem. In
many cases he might be better served concentrating on the problem itself.

Occasionally there may be problems where the GA paradigm is supe-
rior. In particular, for some problems the notion of combining results from
various local searches to direct future search seems appealing. And hacking
around in a semi-formal, semi-intuitive fashion sometimes yields reason-
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able first results, along with new insights. Furthermore, even when other
methods are carefully tuned to certain problems or instances, when these
methods are combined the efficacy of the results are often hard to predict.
For example, combining different heuristic local search graph coloring algo-
rithms sometimes produced unexpected negative performance [10]. Thus,
the complexity of GA internal interactions is not in itself sufficient reason
to abandon further research.

Much further basic research will be required to determine where GAs are
most applicable. The fact of natural evolution does not indicate where these
areas of applicability might be, and it certainly yields no basis to claim GAs
as a universal magic bullet. This message may be bad news or good news
depending on whether you are looking for a quick fix problem solver, or an
interesting and difficult domain for further research.
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