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Abstract—The recent “no free lunch” theorems of Wolpert and Macready indicate the need to reassess em-
pirical methods for evaluation of evolutionary and genetic optimizers. Their main theorem states, loosely,
that the average performance of all optimizers is identical if the distribution of functions is average. The
present work generalizes the result to an uncountable set of distributions. The focus is upon the conserva-
tion of information as an optimizer evaluates points. It is shown that the information an optimizer gains
about unobserved values is ultimately due to its prior information of value distributions. Inasmuch as in-
formation about one distribution is misinformation about another, there is no generally superior function
optimizer. Empirical studies are best regarded as attempts to infer the prior information optimizers have
about distributions–i.e., to determine which tools are good for which tasks.

1.0 Introduction
In “No Free Lunch Theorems for Search,” Wolpert and Macready (1995) have established that there exists
no generally superior function optimizer. There is no “free lunch” in the sense that an optimizer “pays” for
superior performance on some functions with inferior performance on others. Their paper shows that if the
distribution of functions is uniform, then gains and losses balance precisely, and all optimizers have identi-
cal average performance.

The news of “no free lunch” spread rapidly through the evolutionary computation (EC) community.
Empirical comparison of genetic and evolutionary optimizers has long been the cornerstone of research in
the field (Bäck and Schwefel 1993; Fogel 1995). Furthermore, many workers regard natural evolution as an
optimized optimizer that produces outstanding results under all circumstances. Thus it is not surprising that
the significance of “no free lunch” has been debated vigorously in the community. It is surprising, however,
that few understand the fundamental reasons for the result.

It is even more surprising that the fundamental reasons have changed several times during the prepara-
tion of this paper. The primary objective was, and is, to provide EC practitioners with an accessible expla-
nation. It is purely fortuitous that simplification of the formal presentation has led to new results on “no
free lunch” distributions–that is, function distributions for which random walks are optimal.

The formal demonstration depends primarily upon a theorem that describes how information is con-
served in optimization. This Conservation Lemma states that when an optimizer evaluates points, the poste-
rior joint distribution of values for those points is exactly the prior joint distribution. Put simply, observing
the values of a randomly selected function does not change the distribution.

To see the usefulness of the lemma, suppose that function values are independent and identically dis-
tributed (iid). The Conservation Lemma indicates that the values observed by an optimizer will also be iid.
In essence, the points are identical roulette wheels, and all ways of visiting n distinct points correspond to
identically distributed value sequences. Thus there is no distinction between optimizers' value-sequence
distributions. Any distinction between the value-sequence distributions on a subset of functions is “can-
celed” by a distinction on the complementary subset. This cancellation is most intuitive when values are iid
uniform–i.e., when the distribution of functions is uniform (Wolpert and Macready 1995).

The following section presents several definitions and concepts required in Section 3, where the formal
results are derived. Section 4 discusses the significance of the results. Section 5 makes suggestions for fu-
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ture research in genetic and evolutionary optimization. Section 6 states several conclusions, and briefly
argues that no conclusions about natural evolution are justified.

2.0 Definitions, Concepts, and Notation
The section starts with a brief review of functions. Then the notion of a random distribution of functions is
presented in a simple, but somewhat unusual, way. After that, the notions of mutual independence and
mutual information are explained in terms relevant to the present work. Finally, the term walk (as in “ran-
dom walk”) is defined as an abstraction of an optimizer's decisions to evaluate points in a particular order.
The theorems of Section 3 will refer to walks, and not to optimizers.

2.1 Functions
Let S and T be sets. A function f from domain S to codomain T, denoted f: SÆT, is a subset of S¥T such that
for each x Œ S there is exactly one y Œ T for which (x, y) Œ f. The expression y = f(x) is equivalent to (x, y)
Œ f. The range of f is f(S) = {f(x): xŒS}.

To paraphrase loosely, a function is a set of value assignments. Every domain element has exactly one
value in the codomain. The codomain elements that are actually “used” as values comprise the range. For
instance, if f = {(b, 2), (a, 2), (c, 1)} then the domain is {a, b, c} and the range is {1, 2}. Any superset of
the range may be regarded as the codomain. Note that f is equivalent to the union of three disjoint and non-
empty functions; i.e., f = {(a, 2)} » {(b, 2)} » {(c, 1)}.

In the present work, as in (Wolpert and Macready 1995), the domain and codomain are assumed to be
finite. The significance of this restriction is mathematical, rather than practical, because digital computers
represent only finite sets. Extension of the formal results to infinite sets is straightforward, but interpreta-
tion becomes considerably more complicated.

2.2 Distributions of Functions
It is no more odd to say that a random variable is distributed on a set of functions than to say that it is dis-
tributed on a set of Presidential candidates. The random variable models uncertainty about an event, and
there are no restrictions upon the set of possible outcomes. For instance, let random variable F be distrib-
uted on the set of all functions from S to T. The expression P(F = f) denotes the probability that the out-
come of F is a particular function f: SÆT. If F is uniformly distributed, then P(F = f) = |T|–|S| for each of the
|T||S| functions f from S to T.

Recalling the definition of a function, F can be written

F ≡ {(x1, F(x1)), (x2, F(x2)), ..., (xn, F(xn))},

where |S| = n. The random variables F(x), x Œ S, are sometimes referred to as the values of F. Note that x is
an index, not an argument, in the expression F(x). This notation permits the straightforward statement,

P(F = f) = P(F(x1) = f(x1), ..., F(xn) = f(xn))

for all functions f. That is, the distribution of a random function corresponds to a joint distribution of its
values.

As an example of the relationship between the distribution of F and the distributions of its values, note
that F is uniform on the set of all functions from S to T if and only if the distributions of its values are mu-
tually independent and uniform on T.

It is sometimes convenient to refer to an observed outcome of a random variable, X, as a realization of
X. In the context of function optimization, some additional terminology is helpful. The optimizer operates
upon a realization of F. Evaluating or visiting point x is equivalent to observing the realization of the value
F(x). It is said that the value of x has been observed. The values of unvisited points are said to be unob-
served.

2.3 Mutual Independence

The random variables F(x), x Œ S, are mutually independent if and only if



P(F = f) = Px P(F(x) = f(x))

for all functions f from S to T. That is, for every joint outcome the probability is the product of the prob-
abilities of the individual outcomes. Equivalently, the values are mutually independent if and only if all
conditional distributions are identical to their unconditional distributions. That is,

P(G = g | H = h) = P(G = g),

for all outcomes g of G and h of H, where G and H are disjoint subsets of F. Put simply, the distributions of
unobserved values do not change when some values have been observed.

2.4 Entropy and Mutual Information
This subsection provides a sufficient set of concepts and definitions to understand the information theoretic
analysis of function optimization in later sections.

2.4.1 Entropy

The entropy of a distribution is the average uncertainty of the outcome or, equivalently, the average infor-
mation gained when the outcome is observed. For each possible outcome x, -log2 p(x) is the information
gained when x is observed.3 The average information is

H(X) = –Sx p(x) log2 p(x),

where x ranges over the possible outcomes of random variable X.
This measure of information has profound physical significance. Consider a scenario in which an ob-

server uses a binary code and some method of transmission to tell a non-observer about the outcomes. A
compelling measure of information in the outcomes is the minimum bit rate (bits per outcome) that suffices
to keep the non-observer fully informed. Determining the minimum bit rate over all possible codes is a
daunting prospect, however. In each code, outcomes have binary names, and the bit rate is Sx p(x) n(x),
where n(x) is the length of the name for outcome x. Fortunately, a fundamental theorem of information the-
ory states that the bit rate is minimized when each outcome is assigned a name of –log2 p(x) bits.4 These
ideal lengths are not necessarily integers, but there is an efficient algorithm that always succeeds in gener-
ating a real code with bit rate

Sx p(x) n(x) = -Sx p(x) log2 p(x).5

Thus the entropy of a distribution is the minimum bit rate that allows a non-observer to be fully informed of
outcomes. Other forms of entropy are H(X, Y), the joint entropy, and H(X | Y), the conditional entropy,
where X and Y are random variables. As the names and notations suggest, H(X, Y) is the average informa-
tion in joint outcomes of X and Y, and H(X | Y) is the average information in the outcome of X when the
outcome of Y is known. The identity p(x, y) = p(x | y) p(y) has as its analog H(X, Y) = H(X | Y) + H(Y).

2.4.2 Mutual Information

Another measure of information is defined in terms of entropy. The mutual information of the distributions
of X and Y is

I(X; Y) = H(X) – H(X | Y).

The difference H(X) – H(X | Y) is the reduction in average uncertainty when the outcome of Y is known.
The reduction is non-negative, although some outcomes of Y may supply negative information (i.e., in-
crease the uncertainty of the outcome of X).
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In the present work, the mutual information of the distribution of a function value and a joint distribu-
tion of function values is of particular interest. For a random variable F distributed on the set of all func-
tions from S to T, the mutual information of the distributions of F(x) and G Ã F, x Œ S, F(x) œ G, is

I(F(x); G) = H(F(x)) – H(F(x) | G).

This may be interpreted as potential reduction in an optimizer's average uncertainty about the value of x
after visiting a certain set of points. Actual reduction requires knowledge of the joint distribution of G and
F(x). That is, when the realization of G is g, p(y | g) = p(y, g) / p(g) for all possible realizations y of F(x).6

The optimizer gains information about F(x) to the degree that it obtains p(y  | g ).7 Thus the information
comes from the optimizer's prior information of p(y, g), not g itself.8

By definition, the values of F are mutually independent if and only if H(F(x) | G) = H(F(x)) for all F(x)
Œ F and G Ã F, F(x) œ G. But H(F(x) | G) = H(F(x)) is equivalent to I(F(x); G) = 0. Thus mutual independ-
ence is equivalent to zero mutual information of all values and subsets of values. In this context, it is in-
structive to note that the total amount of information gained about unobserved values from observed values
is Sx H(F(x)) – H(F) bits, on average. The difference is zero if and only if the values of F are mutually in-
dependent.

2.5 Walks of Functions
The notion of “honest” selection of a sequence of points is formalized with the definition of walk. In es-
sence, it is dishonest to evaluate points and omit them from the sequence. It is also dishonest to conceal the
order in which points are evaluated.

Formally, let x denote any finite sequence of points in the domain of function f. Sequence x is a walk
of f if and only if x is empty or x = x'x such that

i) x' is a walk of f,
ii) x does not occur in x', and
iii) x is selected without reference to values of points other than those in x'.

Note that the definition does not preclude stochastic selection of m > 1 points at a time. Any permutation of
simultaneously selected points may be added to the end of the walk, subject to the constraint that no points
in the walk are duplicated. Thus the parallel exploration that characterizes evolutionary and genetic algo-
rithms is not excluded.

When functions are randomly distributed, the value sequence of an arbitrary walk x = x1...xn, is ran-
domly distributed as well. The expression px(y1, ..., yn) denotes the probability that value sequence y1...yn

corresponds to x.

3.0 Fundamental Theorems
This section explores the relationship between properties of the distribution of functions and properties of
the distribution of value sequences for a walk. Of particular interest are the conditions under which all
walks w and x of identical length have identical value-sequence distributions pw and px. When the value-
sequence distribution depends only upon the length of the walk, it clearly does not depend upon the proce-
dure by which the walk is generated.

3.1 Conservation of Information
An important property of walks is that they provide no information about the values of visited points. The
ubiquitous claim that optimizers gain and exploit information about functions is somewhat misleading. The
following proof shows that optimizers gain information about the values of unvisited points without gain-
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ing information about the function. This apparent paradox is resolved by noting that optimizers exploit the
redundancy (mutual information) of value distributions.

Lemma (Conservation). Let F be distributed on the set of all functions from finite set S to finite set T. If x
= x1...xn is a walk of F and (y1, ..., yn) is in Tn then

px(y1, ..., yn) = P(F(x1) = y1, ..., F(xn) = yn).

The proof proceeds by induction on n. For n = 1, px(y1) = P(F(x1) = y1 because x1 is by definition selected
without reference to the value of any point. Now suppose that the equality holds for n = k, 1 £ k < |S|. For
arbitrary walk x = x1... xk+1 = wxk+1, the prefix w is by definition a walk, and

px(y1, ..., yk+1) = px(yk+1 | y1, ..., yk) pw(y1, ..., yk).

The induction step is completed by showing that each factor in the right-hand side can be rewritten as the
corresponding factor in

P(F(x1) = y1, ..., F(xk+1) = yk+1) = P(F(xk+1) = yk+1 | F(x1) = y1, ..., F(xk) = yk)
¥ P(F(x1) = y1, ..., F(xk) = yk).

By definition, xk+1 is selected without reference to values of points other than x1, ..., xk, and therefore

px(yk+1 | y1, ..., yk) = P(F(xk+1) = yk+1 | F(x1) = y1, ..., F(xk) = yk).

By hypothesis,

pw(y1, ..., yk) = P(F(x1) = y1, ..., F(xk) = yk).

This establishes that the equality stated in the lemma holds for n = 1, ..., |S|.

3.2 Distributions Independent of Walk Selection
It follows from the Conservation Lemma that px = pw for all walks x = x1...xn and w = w1...wn if and only if
the distributions of all sets {F(x1), ..., F(xn)} and {F(w1), ..., F(wn)} of n values are identical. If all sets of n
values are identically distributed for n = 1, ..., |S|, then the distribution of value sequences is identical for all
ways of selecting walks. Furthermore, all conditional distributions px(yk+1 | y1, ..., yk) depend only upon k.
This indicates that all sets of k observed values supply the same information about each of the unobserved
values.

3.3 Mutually Independent Value Distributions
If function values are mutually independent, each of the posterior distributions px(yk+1 | y1, ..., yk) is identical
to the corresponding prior, P(F(xk+1) = yk+1). Thus an optimizer can exploit only prior information-there is
no mutual information. To be more explicit, no strategy is better than one that selects a fixed walk on the
basis of the prior distribution of values, irrespective of the realization of F.

Theorem (Independent Values). Let F be distributed on the set of all functions from finite set S to finite set
T. Also let x = x1... xn be a walk of F and let (y1, ..., yn) be an element of Tn. If the values F(x), x Œ S, are
mutually independent then

px(y1, ..., yn) = P(F(x1) = y1) ¥ L ¥ P(F(xn) = yn).

This is demonstrated by writing

px(y1, ..., yn) = P(F(x1) = y1, ..., F(xn) = yn) = P(F(x1) = y1) ¥ L ¥ P(F(xn) = yn).

The first step is justified by the Conservation Lemma, and the second by the mutual independence of F(x1),
..., F(xn).



3.4 Independent and Identical Value Distributions
If values are not only mutually independent, but identically distributed, then every ordering of points corre-
sponds to an identical sequence of value distributions. That is, sequences of n iid values are iid n-sequences
of values. As is evident in the following corollary, the distribution px depends only upon the length of x.

Corollary (IID Values). If, in addition to the hypotheses of the Independent Values Theorem, the values
F(x), x Œ S, are identically distributed as random variable Y then

px(y1, ..., yn) = Pi P(Y = yi).

To verify, substitute P(Y = yi) for P(F(xi) = yi), i = 1, ..., n, in the equality of the theorem.

3.5 “Needle in a Haystack” Functions
The IID Values Corollary is much stronger than a statement that all walks of a given length have identically
distributed value sequences. It says that all points in all walks have identically distributed values. As one
might guess, mutual independence is not a necessary condition for the walk selection procedure to be ir-
relevant to the distribution of value sequences. There are function distributions in which the mutual infor-
mation of value distributions cannot be exploited by any optimizer. It cannot be exploited because every set
of k observed values provides the same information about each of the unobserved values (Section 3.2).

This is illustrated by constructing a distribution of “needle in a haystack” functions. Let the domain
and codomain be S = {a, b, c, d} and T = {0, 1}, respectively. Let random variable F be uniformly distrib-
uted on the four functions from S to T that assign 1 to exactly one element of the domain. It is easily veri-
fied that all value subsets of equal size are identically distributed. Thus all procedures for generating walks
yield identical value-sequence distributions.

It remains to be shown that the value distributions are mutually informative. For each x Œ S, P(F(x) =
0) = 3/4 and P(F(x) = 1) = 1/4. This gives entropy of H(F(x)) ª 0.81 bits for each value. With four
equiprobable realizations of F, H(F) = 2, and the total mutual information of the value distributions is
Sx H(F(x)) – H(F) ª 3.24 – 2 = 1.24 bits.

4.0 Discussion

4.1 The Source of Information
The Conservation Lemma indicates that a walk-generating procedure gains no information about the func-
tion.9 As mentioned in Section 2.4.2, mutual information is not gained from observed values.10 An opti-
mizer exploits mutual information only to the degree that it is informed of the prior distribution of func-
tions. Mutual information is a measure of the information that can be gained from the prior distribution.11

Note that not all parts of the joint distribution are equally relevant to locating optima. In some cases
there is strong regularity in the structure of the distribution which can be captured in a simple proce-
dure–e.g., consider optimization of quadratic functions. Thus there are subtle questions as to what prior
information is embedded in the algorithm, and as to how it is encoded.12

4.2 No Free Lunch
The present work does not contradict earlier results (Wolpert and Macready 1995), because a distribution
of functions is uniform if and only if the values are iid uniform. The uniform distribution is a very special
case, because it is the average of all distributions. The notion that an optimizer has to “pay” for its superi-
ority on one subset of functions with inferiority on the complementary subset is easiest to understand in the
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case of the uniform. The issue of whether the distribution of problems in the world is uniform is irrelevant.
The point is to gain insight into the economy of information and optimization performance.

4.3 Optimizing Uniformly Distributed Functions
The obvious interpretation of “no free lunch” is that no optimizer is faster, in general, than any other. This
misses some very important aspects of the result, however. One might conclude that all of the optimizers
are slow, because none is faster than enumeration. And one might also conclude that the unavoidable slow-
ness derives from the perverse difficulty of the uniform distribution of test functions. Both of these conclu-
sions would be wrong.

If the distribution of functions is uniform, the optimizer's best-so-far value is the maximum of n reali-
zations of a uniform random variable. The probability that all n values are in the lower q fraction of the
codomain is p = qn. Exploring n = log2 p points makes the probability p that all values are in the lower q
fraction. Table 1 shows n for several values of q and p.

It is astonishing that in 99.99% of trials a value better than 99.999% of those in the codomain is ob-
tained with fewer than one million evaluations. This is an average over all functions, of course. It bears
mention that one of them has only the worst codomain value in its range, and another has only the best
codomain value in its range.

Breeden (1994) has given an analogous distribution-free result for finite functions. Suppose that all
points have been ranked according to value, with ties broken arbitrarily. Further, let it be the rank function,
rather than the given test function, that is optimized. If a point is drawn randomly from the domain, the
value is uniform on the set of ranks. It follows that randomly drawing n points, with replacement, is
equivalent to sampling a uniform random variable n times. This is precisely the condition underlying the
computations in the table above. Thus the table also describes the relationship between rank, probability,
and number of evaluations in random optimization of any finite function. In this case, however, the num-
bers do not represent an average over functions. They apply to each rank function individually.

How can test functions from a distribution with absolutely no structure be so easy, on average, to op-
timize? When function values are drawn independently from a uniform distribution, high values are as
likely as low values. High and low values, both, tend to be spread throughout the domain. Every point is a
good one to try, and the order in which points are tried is irrelevant Intuitively, when there is no structure to
help the optimizer find good points, there is also no structure to hide good points. As the next subsection
shows, the number of good points is also very important.

4.4 The Hardest Distributions Are the Easiest
The “needle in a haystack” distribution (Section 3.5) is the hardest distribution for function maximizers.
Knowing which element of the domain is assigned the good value is equivalent to knowing the identity of
the function. Thus the entropy of the distribution of good points is equal to the entropy of the distribution of
functions. The location of good points cannot be more uncertain.

The most difficult distribution for maximizers is the least difficult for minimizers. When the sense of
optimality is reversed, the problem is to find the “hay.” The entropy of the location of good points cannot
be smaller without being zero. Changing the optimality criterion does not change the distribution of values,
and thus there is no mutual information to be exploited by minimizers. That is, there is no strategy for
avoiding the one point with a bad value.

The reason that the mutual information cannot be exploited is interesting. The location of the maxi-
mum is uniformly distributed on the domain, and all non-maxima have identical values. Observing 0's at
visited points yields no information as to which of the unvisited points has the value of 1. The mutual in-
formation corresponds to reduction in uncertainty as to whether one of the unvisited points is the optimum.
Observing a 1 removes all uncertainty about the values of unvisited points.

Probability
Fraction 0.01 0.001 0.0001
0.99 458 687 916
0.999 4603 6904 9206
0.9999 46049 69074 92099
0.99999 460515 690772 921029

Table 1. Number of trials required to obtain a particular quality at a particular probability.1



Recall that the domain of the four functions in the distribution is {a, b, c, d}, and that H(F(x)) = 0.811
bits for all points x. When the values of three points have been observed there is no uncertainty in the value
of the remaining point. This indicates that the joint entropy of any three value distributions is 2 bits. It is
easy to determine that the joint entropy of any two distributions is 1.5 bits. Thus, on average, the first value
observation supplies 0.811 bits, the second 1.5 – 0.811 = 0.689 bits, the third 2 – 1.5 = 0.5 bits, and the
fourth 2 – 2 = 0 bits of information. The corresponding mutual information values are 0, 0.122, 0.311, and
0.811 bits. As indicated in Section 3.5, the total mutual information of the value distributions is 1.244
bits.13

5.0 Ramifications for Future Studies
From the discussion of preceding sections, there emerges a clear picture of what empirical studies can and
should do. Perhaps the most important observation is that each optimizer has knowledge of some distribu-
tion of functions. Thus empirical performance assessment in the absence of a distribution of problems is
meaningless. Of course, the class of multimodal functions is often identified in the EC literature. But if one
takes multimodal to mean “not unimodal,” then virtually all functions are multimodal. Thus the implicit
uniform distribution on the class makes the performance of all optimizers nearly identical. Specifying a
class that is too broad is not much better than specifying no class at all.

The literature is dominated, however, by continuous functions selected for response surface shape.
This amounts to a strong Euclidean bias. The bias is particularly clear in many descriptions of how an evo-
lutionary algorithm “finds its way” to an optimum, perhaps adapting itself to the orientation of “ravines” in
the response surface. (Similar, but not Euclidean, biases are evident in genetic algorithms. The number of
variations of genetic algorithms makes general statements difficult.) An appropriate way for research to
proceed would be for the properties of interest–they do exist–to be explicitly identified, and for the distri-
bution of functions with those properties to be sampled. Means for random sampling do not necessarily
exist, but that does not reduce the importance of obtaining a representative sample by some reasonable
means. Note, also, that difficulties in random sampling generally diminish as the class is restricted.

5.1 “Promising” Algorithms
Anyone slightly familiar with the EC literature recognizes the paper template “Algorithm X was treated
with modification Y to obtain the best known results for problems P1 and P2.” Anyone who has tried to find
subsequent reports on “promising” algorithms knows that they are extremely rare. Why should this be the
case?

A claim that an algorithm is the very best for two functions is a claim that it is the very worst, on aver-
age, for all but two functions. Indeed, the only way to make an algorithm faster on a given set of functions
is to make it slower on others. It is possible, and clearly undesirable, for speed-ups on particular functions
to be attended by slow-downs on other functions in the class the algorithm is intended to handle well.

In studies of algorithm X-with-Y, there is rarely explicit indication of the class of functions the algo-
rithm should optimize rapidly. It is easy to discern (particularly after conversations with authors) that X-
with-Y is “promising” because the author believes that some additional modification will give excellent
performance on at least one benchmark in {P3, ..., PN} without detracting from the performance on P1 and
P2. Obviously the class of interest is the set of all popular benchmark problems.

It is due to the diversity of the benchmark set that the “promise” is rarely realized. Boosting perform-
ance for one subset of the problems usually detracts from performance for the complement. In any case, the
notion that the best algorithm is one that works well for a wide range of problems is highly dubious, in light
of “no free lunch.” The standard X-with-Y studies have always been subject to criticism, if only because of
their exclusion of bad results. There is now a strong basis for saying that they are totally illegitimate.

5.2 Extensive Benchmark Studies
There is a class of studies of an entirely different caliber, which compares algorithm variants or different
algorithms on more than a few benchmark problems. A major justification for such studies is that they as-
sess algorithms with a diverse collection of problems, and that if one algorithm does better than another on
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a wide range of problems, it is genuinely a better algorithm. Algorithms that do well on only two or three
problems are generally considered to be tuned to those problems.

It is not so much that the rationale for extensive benchmark studies is wrong as it is that the objective
of finding a generally better algorithm does not appear to be well founded. It is much as though the com-
munity is insisting that tools be Swiss army knives instead of hammers and screwdrivers.

Revision of objectives is strongly indicated by link of performance to information of the prior distribu-
tion. “How good is the optimizer?” is more appropriately “What does the optimizer do?” The preoccupa-
tion with the best optimizer should shift to an interest in finding the right optimizer for the job. The bench-
mark problems would profitably be replaced by a collection of diagnostic distributions. That is, the
distributions would be designed to provide information as to how an optimizer works.

Researchers who select distributions, sample them, and give a full characterization of the results of tri-
als provide information that can be used in many ways.

5.3 Applications
Studies of applications have the advantage that distributions are given. The main concern is to obtain a ran-
dom and representative sample, as it always has been. There are no apparent ramifications of “no free
lunch” for these studies.

It is extremely interesting, however, that in most applications the basic algorithm is tuned to fit the
problem domain. For some applications, the algorithm fails miserably prior to modification. This is not a
rare event, and it is just what one would expect on the basis of the “no free lunch” arguments.

6.0 Conclusion
Hammers contain information about the distribution of nail-driving problems. Screwdrivers contain infor-
mation about the distribution of screw-driving problems. Swiss army knives contain information about a
broad distribution of survival problems. Hammers and screwdrivers do their own jobs very well, but they
do each other’s jobs very poorly. Swiss army knives do many jobs, but none particularly well. When the
many jobs must be done under primitive conditions, however, Swiss army knives are ideal.

The tool literally carries information about the task. Furthermore, optimizers are literally tools-an algo-
rithm implemented by a computing device is a physical entity. In empirical study of optimizers, the objec-
tive is to determine the task from the information in the tool. The problem of the EC researcher is similar to
that of an anthropologist trying to explain excavated artifacts. EC researchers make and bury the tools be-
fore digging them up and trying to explain them, however. This anomaly derives from the fact that the al-
gorithms are biologically inspired, but poorly understood.

Do the arguments of this paper contradict the evidence of remarkable adaptive mechanisms in biota?
The question is meaningful only if one regards evolutionary adaptation as function optimization. Unfortu-
nately, that model has not been validated. It is well known that biota are components of complex, dynami-
cal ecosystems. Adaptive forces can change rapidly and nonlinearly, due in part to the fact that evolution-
ary adaptation is itself ecological change. In terms of function optimization, evaluation of points changes
the fitness function. The Conservation Lemma clearly does not apply to such a process.
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