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Abstract

In a recent paper [3] it was shown that No Free Lunch results [5] hold
for any subset F of the set of all possible functions from a finite set X to
a finite set Y iff F is closed under permutation of X . In this article, we
prove that the number of those subsets can be neglected compared to the
overall number of possible subsets. Further, we present some arguments
why problem classes relevant in practice are not likely to be closed under
permutation.

1 Introduction

The No Free Lunch (NFL) theorems—roughly speaking—state that all search
algorithms have the same average performance over all possible objective func-
tions f : X → Y, where the search space X as well as the cost-value space Y
are finite sets [5]. However, it has been argued that in practice one does not
need an algorithm that performs well on all possible functions, but only on a
subset that arises from the real-world problems at hand. Further, it has been
shown that for pseudo-Boolean functions restrictions of the complexity lead to
subsets of functions on which some algorithms perform better than others (e.g.,
in [4] complexity is defined in terms of the number of local minima and in [1] the
complexity is defined based on the size of the smallest OBDD representations
of the functions).

Recently, a sharpened version of the NFL theorem has been proven that
states that NFL results hold for any subset F of the set of all possible functions
if and only if F is closed under permutation [3]. Based on this important result,
we can derive classes of functions where NFL does not hold simply by showing
that these classes are not closed under permutation (c.u.p.). This leads to the
encouraging results in this paper: It is proven that the fraction of subsets c.u.p.
is so small that it can be neglected. In addition, arguments are given why we
think that objective functions resulting from important classes of real-world
problems are likely not to be c.u.p.
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In the following section, we give some basic definitions and concisely restate
the sharpened NFL theorem given in [3]. Then we derive the number of subsets
c.u.p. Finally, we discuss some observations regarding structured search spaces
and closure under permutation.

2 Preliminaries

We consider a finite search space X and a finite set of cost values Y. Let
F = YX be the set of all objective functions f : X → Y to be optimized
(also called fitness, energy, or cost functions). NFL theorems are concerned
with non-repeating black-box search algorithms (referred to simply as algo-
rithms for brevity) that choose a new exploration point in the search space
depending on the complete history of prior explorations: Let the sequence
Tm = 〈(x1, f(x1)), (x2, f(x2)), . . . , (xm, f(xm))〉 represent m non-repeating ex-
plorations xi ∈ X , ∀i,j : xi 6= xj and their cost values f(xi) ∈ Y. An algorithm
a appends a pair (xm+1, f(xm+1)) to this sequence by mapping Tm to a new
point xm+1, ∀i : xm+1 6= xi. Generally, the performance of an algorithm a after
m iterations with respect to a function f depends on the sequence of cost val-
ues Y (f,m, a) = 〈f(x1), f(x2), . . . , f(xm)〉 the algorithm has produced. Let the
function c denote a performance measure mapping sequences of Y to the real
numbers (e.g., in the case of function minimization a performance measure that
returns the minimum Y value in the sequence could be a reasonable choice).

Let π : X → X be a permutation (i.e., bijective function) of X . The set of
all permutations of X is denoted by P(X ). A set F ⊆ F is said to be closed
under permutation (c.u.p.) if for any π ∈ P(X ) and any function f ∈ F the
function f ◦ π is also in F .

Theorem 1 (NFL). For any two algorithms a and b, any value k ∈ �
, and

any performance measure c

∑

f∈F
δ(k, c(Y (f,m, a))) =

∑

f∈F
δ(k, c(Y (f,m, b)))

iff F is c.u.p.

Herein, δ denotes the Kronecker function (δ(i, j) = 1 if i = j, δ(i, j) = 0
otherwise). A proof of theorem 1 is given in [3]. This theorem implies that for
any two algorithms a and b and any function fa ∈ F , where F is c.u.p., there is
a function fb ∈ F on which b has the same performance as a on fa.

3 Fraction of Subsets Closed under Permutation

Let F = YX be the set of functions mapping X → Y. There exist 2(|Y||X|) − 1
non-empty subsets of F . We want to calculate the fraction of subsets that are
c.u.p.
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Theorem 2. The number of non-empty subsets of YX that are c.u.p. is given
by

2(|X|+|Y|−1
|X| ) − 1 .

The proof is given in the appendix.
Figure 1 shows a plot of the fraction of non-empty subsets c.u.p., i.e.,

(
2(|X|+|Y|−1

|X| ) − 1
)/(

2(|Y||X|) − 1
)
,

versus the cardinality of X for different values of |Y|. The fraction decreases for
increasing |X | as well as for increasing |Y|. Already for small |X | and |Y| the
fraction almost vanishes, e.g., for a Boolean function f : {0, 1}3 → {0, 1} the
fraction is � 10−170.

4 Search Spaces with Neighborhood Relations

In the previous section, we have shown that the fraction of subsets c.u.p. is
close to zero already for small search and cost-value spaces. Still, the absolute
number of subsets c.u.p. grows rapidly with increasing |X | and |Y|. What if
these classes of functions are the “important” ones, i.e., those we are dealing
with in practice? In this section, we define some quite general constraints on
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Figure 1: The ordinate gives the fraction of subsets closed under permutation
on logarithmic scale given the cardinality of the search space X . The different
curves correspond to different cardinalities of the codomain Y.
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functions important in practice that induce classes of functions that are not
c.u.p.

We believe that two assumptions can be made for most of the functions we
are dealing with in real-world optimization: First, the search space has some
structure. Second, the set of objective functions we are interested in fulfills
some constraints defined based on this structure. More formally, there exists a
non-trivial neighborhood relation on X based on which constraints on the set
of functions under consideration are formulated. For example, with respect to a
neighborhood relation we can define concepts like ruggedness or local optimality
and constraints like upper bounds on the ruggedness or on the maximum number
of local minima. Intuitively, it is likely that in a function class c.u.p. there exists
a function that violates such constraints.

We define a simple neighborhood relation on X as a symmetric function n :
X ×X → {0, 1}. Two elements xi, xj ∈ X are called neighbors iff n(xi, xj) = 1.
We call a neighborhood non-trivial iff ∃xi, xj ∈ X : xi 6= xj ∧ n(xi, xj) = 1 and
∃xk, xl ∈ X : xk 6= xl ∧ n(xk, xl) = 0. It holds:

Theorem 3. A non-trivial neighborhood on X is not invariant under permuta-
tions of X .

Proof. It holds ∃xi, xj, xk, xl ∈ X : xi 6= xj ∧ xk 6= xl ∧ n(xi, xj) = 0 ∧
n(xk, xl) = 1. For any permutation π that maps xi and xj onto xk and xl,
respectively, the invariance property, ∀a, b ∈ X : n(xa, xb) = n(π(xa), π(xb)), is
violated. ut

Remark 1. Assume the search space X can be decomposed as X = X1 × · · · ×
Xl, l > 1 and let on one component Xi exist a non-trivial neighborhood ni :
Xi×Xi → {0, 1}. This neighborhood induces a non-trivial neighborhood on X ,
where two points are neighbored iff their i-th components are neighbored with
respect to ni. Thus, the constraints discussed below need only refer to a single
component.

Remark 2. The neighborhood relation need not be the canonical one (e.g., Ham-
ming-distance for Boolean search spaces). Instead, it can be based on “pheno-
typic” properties (e.g., if integers are encoded by bit-strings, then the bit-strings
can be defined as neighbored iff the corresponding integers are).

Now we describe some constrains that are defined with respect to a neigh-
borhood relation and are—to our minds—relevant in practice. For this purpose,
we assume a metric dY : Y×Y → �

on Y, e.g., in the typical case of real-valued
fitness function Y ⊂ �

the Euclidean distance.
First, we show how a constraint on steepness (closely related to the concept

of strong causality) leads to a set of functions that is not c.u.p. Based on a
neighborhood relation on the search space, we can define a simple measure of
maximum steepness of a function f ∈ F by

smax(f) = max
xi,xj∈X ∧n(xi,xj)=1

dY(f(xi), f(xj)) .
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Further, for a function f ∈ F , we define the diameter of its range as

dmax(f) = max
xi,xj∈X

dY(f(xi), f(xj)) .

Corollary 1. If the maximum steepness smax(f) of every function f in a non-
empty subset F ⊂ F is constrained to be smaller than the maximal possible
maxf∈F dmax(f), then F is not c.u.p.

Proof. Let g = arg maxf∈F dmax(f) and let xi and xj be two points with prop-
erty d(g(xi), g(xj)) = dmax(g). Since the neighborhood on X is non-trivial there
exist two neighboring points xk and xl. There exists a permutation π that maps
xi and xj on xk and xl. If F is c.u.p., the function g ◦ π is in F . This function
has steepness smax(g ◦ π) = dmax(g) = maxf∈F dmax(f), which contradicts the
steepness-constraint. ut

As a second constraint, we consider the number of local minima, which is
often regarded as a measure of complexity [4]. For a function f ∈ F a point
x ∈ X is a local minimum iff f(x) < f(xi) for all neighbors xi of x. Given a
function f and a neighborhood relation on X , we define lmax(f) as the maximal
number of minima that functions with the same Y-histogram as f can have (i.e.,
functions where the number of X -values that are mapped to a certain Y-value
are the same as for f , see appendix). In the appendix we prove that for any two
functions f, g with the same Y-histogram there exists a permutation π ∈ P(X )
with f ◦ π = g. Thus, it follows:

Corollary 2. If the number of local minima of every function f in a non-
empty subset F ⊂ F is constrained to be smaller than the maximal possible
maxf∈F lmax(f), then F is not c.u.p.

For example, consider pseudo-Boolean function {0, 1}n→ �
and let two points

be neighbored iff they have Hamming-distance one. Then the maximum number
of local minima is 2n−1.

5 Conclusion

Based on the results in [3], we have shown that the statement “I’m only inter-
ested in a subset F of all possible functions, so the NFL theorems do not apply”
is true with a probability close to one (if F is chosen uniformly and Y and X have
reasonable cardinalities). Further, the statements “In my application domain,
functions with maximum number of local minima are not realistic” and “For
some components, the objective functions under consideration will not have the
maximal possible steepness” lead to scenarios where NFL does not hold.
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A Proof of Theorem 2

For the proof, we use the concepts of Y-histograms: We define a Y-histogram
(histogram for short) as a mapping h : Y → � 0 such that

∑
y∈Y h(y) = |X |.

The set of all histograms is denoted H. With any function f : X → Y we
associate the histogram h(y) = |f−1(y)| that counts the number of elements in
X that are mapped to the same value y ∈ Y by f . Herein, f−1(y), y ∈ Y returns
the preimage {x|f(x) = y} of f . Further, we call two functions f, g h-equivalent
iff they have the same histogram and we call the corresponding h-equivalence
class Bh ⊆ F containing all function with histogram h a basis class. Before
we prove theorem 2, we consider the following lemma that gives some basic
properties of basis classes.

Lemma 1. (a) There exist
(|X |+ |Y| − 1

|X |

)

pairwise disjoint basis classes and
⋃

h∈H
Bh = F .

(b) Two functions f, g ∈ F are h-equivalent iff there exists a permutation π
of X such that f ◦ π = g.

(c) Bh is equal to the permutation orbit of any function f with histogram h,
i.e.,

Bh =
⋃

π∈P(X )

{f ◦ π} .

(d) Any subset F ⊆ F that is c.u.p. is uniquely defined by a union of pairwise
disjoint basis classes.

Proof. (a) The number |H| of different histograms is given by
(|X |+ |Y| − 1

|X |

)
,

i.e., the number of distinguishable distributions (e.g., [2], p. 38). Two basis
classes Bh1 and Bh2 , h1 6= h2, are disjoint because functions in different
basis classes have different histograms. The union

⋃
h∈H Bh = F because

every function in F has a histogram.

(b) Let f, g ∈ X be two functions with same histogram h. Then, for any
y ∈ Y, f−1(y) and g−1(y) are equal in size and there exists a bijective
function πy between these two subsets. Then the bijection

π(x) = πy(x) , where y = f(x) ,
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defines a unique permutation such that f ◦ π = g. Thus, h-equivalence
implies existence of a permutation. On the other hand, the histogram of a
function is invariant under permutation since for any y ∈ Y and π ∈ P(X )

∣∣(f ◦ π)−1(y)
∣∣ =

∑

x∈X
δ(y, f(π(x))) =

∑

x∈X
δ(y, f(x)) =

∣∣f−1(y)
∣∣ ,

because π is bijective and the addends can be resorted. Thus, existence
of a permutation implies h-equivalence.

(c) For a function f with histogram h, let Of =
⋃
π∈P(X ){f ◦ π} be the

orbit of f under permutations π. By (b), all functions in Of have the
same histogram and thus Of ⊆ Bh. On the other hand, for any functions
g ∈ Bh there exists by (b) a permutation π such that f ◦ π = g and thus
Bh ⊆ Of .

(d) For a subset F ⊆ F , let Fh = Bh ∩ F (i.e., Fh contains all functions in
F with the same histogram h). By (a), all Fh are pairwise disjoint and
F =

⋃
h∈H Fh. Suppose Fh 6= ∅: Since F is c.u.p. there exists a function

f ∈ Fh that spans the orbit Bh. Thus Bh ⊆ F and therefore Fh = Bh.
Because basis classes are disjoint, the union

F =
⋃

h: h∈H∧Fh 6=∅
Bh

is unique.
ut

Proof of theorem 2. By lemma 1(a), the number of different basis classes is given
by

(|X |+ |Y| − 1

|X |

)
.

The number of different, non-empty unions of basis classes (equal to the cardi-
nality of power set of the set of all basis classes minus one for the empty set) is
given by

2(|X|+|Y|−1
|X| ) − 1 .

By lemma 1(d), this is the number of non-empty subsets of F that are c.u.p. ut
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