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Abstract

The No Free Lunch theorem is reviewed and
cast within a simple framework for black�
box search� A duality result which relates
functions being optimized to algorithms op�
timizing them is obtained and is used to
sharpen the No Free Lunch theorem� Ob�
servations are made concerning problem de�
scription length within the context provided
by the results of this paper� It is seen that
No Free Lunch results are independent from
whether or not the set of functions �over
which a No Free Lunch result holds is com�
pressible�

� Introduction

Roughly put� the No Free Lunch theorem formalizes
the intuitive idea that all blackbox search algorithms
have identical behavior over the set of all possible dis�
crete functions� Thus� on average� no algorithm is bet�
ter than random enumeration in locating a global opti�
mum� If algorithms are executed any given number of
steps� every algorithm �nds the same set of best so�far
solutions over all functions ��� �	� ����

One of the criticisms of the No Free Lunch theorem
is that it applies to large sets of functions and it is
unclear if No Free Lunch applies to small sets or to
real world problems of practical interest� A variant
form of this criticism is that many practical problem
classes have compact descriptions� whereas elements in
the set of all functions from a �nite domain to a �nite
codomain do not have �on average compact descrip�
tions� This criticism has previously been addressed by
various researchers �	� �
�� where it was observed that
a No Free Lunch result holds over classes of functions
much smaller than the set of all functions� This paper

strengthens those observations� obtaining a sharpened
version of the No Free Lunch theorem� and also makes
more explicit a type of duality involving functions be�
ing optimized and algorithms being used to optimize
them� The paper closes with observations regarding
the No Free Lunch theorem and problem description
length�

� Search Algorithm Framework

This section sets forth a framework for the analysis
of deterministic non�repeating blackbox search algo�
rithms� To streamline exposition� such search algo�
rithms will be referred to simply as algorithms� This
framework makes it possible to precisely model all pos�
sible algorithms as they apply to all functions of a
given �nite domain and range�

��� De�nitions

Let X and Y be �nite sets� let f � X � Y be a function�
and de�ne yi as f�xi� De�ne a trace of sizem �m � �
to be a sequence of pairs

Tm � h�x�� y�� �x�� y�� � � � � �xm��� ym��i

Note that a trace is just an ordered sequence of ele�
ments from f �regarding f as a set of ordered pairs�
At times the subscript of a trace will be omitted to
refer to traces of arbitrary size� Let T m be the set of
all traces of size m� and let T be the set of all traces�
Adopt the following notation�

T� � hi

T xm � hx�� x�� � � � � xm��i

T ym � hy�� y�� � � � � ym��i

Tm�i� � �xi� yi

T xm�i� � xi

T ym�i� � yi



A concatenation operator k will be used to extend the
size of a trace in the following way�

Tm k �x� y � hTm���� Tm���� � � � � Tm�m� ��� �x� yi

De�ne a non�repeating trace T to be a trace with
unique x components� i�e� T x�i� � T x�j� � i � j�� A
complete trace T is de�ned to be a trace that covers the
domain� i�e� for all z � X there exists an i such that
T x�i� � z� Because a trace is a sequence of ordered
pairs� a non�repeating trace corresponds to a function�
when it is complete� the corresponding function is f �

Consider a �search� operator g � T � X which when
given a trace as an argument returns the next point
in the search space to be examined� A deterministic

blackbox search algorithm A corresponds to a search
operator g� and takes as arguments a trace Tm and a
function f � YX and returns the trace

Tm�� � Af �Tm � Tm k �g�Tm� f � g�Tm

For example� the �rst two steps of deterministic black�
box search algorithm A would proceed as follows�

T� � Af �T� � T� k �g�T�� f � g�T�

T� � Af �T� � T� k �g�T�� f � g�T�

Such algorithms therefore operate in discrete steps
where each step generates a new pair that is concate�
nated into the trace� Note that the search operator
g is used to generate the x components of the trace�
and that function f is used to evaluate the utility
of those points� this re�ects the separation between
�exploration� �choosing the next point in the search
space and ��tness evaluation� �evaluating the utility
of that new point� Multiple applications of these al�
gorithms will be abbreviated in the natural way� i�e�
Amf �T� � Tm� and in particular� A�

f �T� � T��

A non�repeating blackbox search algorithm�referred
to simply as algorithm�is de�ned to be a black�
box search algorithm whose range contains only non�
repeating traces� The largest trace an algorithm could
generate is clearly a complete trace which has size jX j�

After m steps� algorithm A and function f will gen�
erate trace Tm from initial trace T�� In this paper al�
gorithms always start from the empty trace T�� which
may seem a limitation� However� algorithms with an
arbitrary initial trace size are actually special cases
of algorithms that start from the empty trace� as the
following illustrates� Consider algorithm A and initial
trace Tm� A corresponds to another algorithm A� that

�This paper will follow the convention that free vari�
ables are universally quanti�ed�

given initial trace T� will generate Tm after m steps�
and will behave exactly as A afterwards� Designating
an initial trace is thus simulated by using a slightly
modi�ed algorithm that starts at T�� In other words�
algorithms that can set all points in their traces are
powerful enough to encompass algorithms that can�
not�

Two algorithms A and B will be considered identical
if and only if they both generate the same complete
trace for all f � YX � i�e��

A
jX j
f � B

jX j
f for all f � YX �

��� No Free Lunch

De�ne a performance vector of length m to be a se�
quence of m values from Y � The performance vector
associated with trace Tm is T ym� A performance vec�
tor can thus be said to be derived from a trace� and
a function and an algorithm together can be said to
generate a performance vector from T��

The length m trace Amf �T� generated by algorithm
A and function f will be abbreviated by Tm�A� f�
Let Vm�A� f denote the length m performance vector
generated by A and f � The size subscripts may be
omitted when not needed� Note that the performance
vector Vm�A� f is closely related to Tm�A� f�

Vm�A� f � �Tm�A� fy

De�ne an overall measure of algorithm A and set of
functions F to be a function that maps the set of per�
formance vectors generated by A and F to a real num�
ber� An overall measure can be used to compare the
overall performance of two algorithms on a set of func�
tions� and if the two algorithms have identical overall
measures� it can be said that they perform equally
well over F � An example of an overall measure would
be to take a performance vector measure M �which
maps a performance vector to a real number� ap�
ply it to every element in F and then combine the
results in some symmetric way� such as the averageP

f�F M�V �A� f�jF j�

De�ne an No Free Lunch result over F to be a situa�
tion where any two algorithms will have equal overall
performance with respect to the set of functions F �
Four equivalent statements of the No Free Lunch the�
orem are given below� Where ambiguous� the set of
functions involved is YX �

NFL�� For any overall measure� each algorithm per�
forms equally well�

The following is the pivotal idea contained in the proof



by Radcli�e and Surry �	�� phrased more directly in the
language of the current framework�

NFL
� For any two algorithms A and B� and for
any function f � there exists a function g such that
V �A� f � V �B� g�

The following is the basis of the No Free Lunch proof
given by Schumacher����

NFL�� Every algorithm generates precisely the same
collection of performance vectors when all functions
are considered�

Schumacher has proved in addition that V �A� f �
V �A� g �� f � g� i�e�� the collections referred to in
NFL� are actually sets ���� This fact is a key observa�
tion in demonstrating the equivalence of NFL�� NFL
�
NFL�� and NFL��

As de�ned above� an overall measure is a function
of a set of performance vectors� Consider instead
a weighted overall measure in which a performance
vector measure M applied to each performance vec�
tor is weighted according to the function that gener�
ates it� i�e� W �fM�V �A� f� and summed over f � A
weighted overall measure is not generally subject to
the No Free Lunch theorem except in the case where
the functions are equally weighted� i�e� certain func�
tions are not deemed more important than others� The
statement below is essentially the No Free Lunch result
given in Wolpert and Macready ����

NFL�� For any equally weighted overall measure� each
algorithm will perform equally well�

A corollary of the No Free Lunch theorem is that if an
algorithm performs better than average on one set of
functions� it must perform worse on the complemen�
tary set� This is essentially an argument for special�
ization� an algorithm will perform well on a small set
of functions at the expense of poor performance on the
complementary set�

An even stronger consequence which seems not to have
been properly appreciated is that all algorithms are
equally specialized� This contradicts commonly stated
beliefs �e�g� ��� about how there can be robust gen�
eral purpose algorithms� meaning that they perform
reasonably well on a broad class of functions at the
expense of not performing extremely well on any set
of functions� Since every algorithm has precisely the
same collection of performance vectors when all func�
tions are considered �NFL�� it follows that if any al�

gorithm is robust� then every algorithm is� and if some

algorithm is not robust� then no algorithm can be�

� Sharpening No Free Lunch

Let f � X � Y be a function and let � � X � X be a
permutation �i�e� � is one�to�one and onto� The per�
mutation �f of f is the function �f � X � Y de�ned
by �f�x � f�����x�

De�ne a set F of functions to be closed under permu�

tation if for every f � F � every permutation of f is
also in F �

Let A be an algorithm with search operator g and let
� be a permutation �of X � The permutation �A of
A is the algorithm with search operator �g de�ned by
�g�� � ����g��x�� where �x�� operates on the x
values of trace � by applying � to each of them� while
leaving the y values untouched�

THEOREM� If

Tn�A� �f � h�x�� y�� � � � � �xn��� yn��i

then

Tn��A� f � h�����x�� y�� � � � � ��
���xn��� yn��i

Proof� By induction on the length of the traces� The
base case is true since all traces of length � are the
same� T���A� f � T��A� �f � hi� Assume the induc�
tive hypothesis �i�e�� the equalities in the statement of
the theorem� By de�nition�

�g�Tn��A� f � ��� � g��x�Tn��A� f

� ��� � g�Tn�A� �f � ����xn

Moreover� f�����xn � �f�xn � yn� Accordingly�

Tn���A� �f � Tn�A� �f jj �xn� yn

Tn����A� f � Tn��A� f jj ��
���xn� yn

Which completes the proof� �

COROLLARY ��Duality�� V ��A� f � V �A� �f

This Corollary is true since� by the previous theorem�
the y values are the same in both traces� This corollary
is striking in the way that it shows a correspondence
between a permutation of an algorithm and a permu�
tation of a function� The following Lemma is an easy
consequence of NFL
�

LEMMA�� If the set of functions F is closed under
permutation� then there is a No Free Lunch result over
F �

Proof� Let A and B be arbitrary algorithms� If
one can show the sets S� � fV �A� f � f � Fg and
S� � fV �B� h � h � Fg� are equal� then any two
algorithms will provide the same data for computing



their combined performance measures� and therefore
the same result will be obtained� By NFL
� there ex�
ists a function h such that V �A� f � V �B� h� Be�
cause these two performance vectors are equal� h must
be a permutation of f � and thus f � F �� h � F �
Hence S� � S�� The reverse containment follows by
symmetry� �

The previous lemma was an intermediate result in
Radcli�e and Surry�s proof of the No Free Lunch the�
orem �	�� The converse of this lemma is also true�

LEMMA
� If a No Free Lunch result holds over the set
of functions F � then F is closed under permutation�

Proof� Assume by way of contradiction that a No
Free Lunch result holds over the set F � but that F
is not closed under permutation� i�e�� the function
f � F has a permutation g which is not in F � Con�
sider an arbitrary algorithm A� Let M�V �A� f � ��
and let M equal zero for all other performance vec�
tors generated by A� By NFL� and the paragraph
following it� for every algorithm B there exists a func�
tion hB �the subscript on h indicates dependence on
B such that M�V �B� k � � �� k � hB � Let
the overall measure be the sum

P
k�F M�V �B� k�

Note that this sum is � when B � A� and since a
No Free Lunch result is assumed over F � the sum is
� for every algorithm B� As f and g are permuta�
tions� let f � �g� By duality� V �A� f � V �A� �g �
V ��A� g� and thus M�V ��A� g � �� Accordingly�P

k�F M�V ��A� k � � �since M�V ��A� k is non
zero only for k � h�A � g �� F � a contradiction� �

Combining the previous lemmas yields the following
sharpened version of the No Free Lunch theorem�

NFL� A No Free Lunch result holds over the set of
functions F if and only if F is closed under permuta�
tion�

� NFL and Permutation Closure

In this section� some consequences of the previous re�
sults are illustrated�

De�ne the permutation closure P �F  of a set of func�
tions F � YX by

P �F  � f�f � f � F� and � is a permutation �of X g

Note that for any sets F� F � of functions �from YX �

P �F 	 F � � P �F  	 P �F �

By construction� P �F  is closed under permutation
and therefore a No Free Lunch result holds over P �F 
for any set F � YX �and hence over unions of such

sets� It bears mentioning that in particular NFL��
NFL
� NFL�� and NFL� are valid with respect to
P �F � Not only do all algorithms display equal behav�
ior over P �F  for some overall measure of performance
�NFL�� they also generate exactly the same set of per�
formance vectors �NFL� and therefore have identical
collections of objective function values at every time
step�

An equivalence relation � may be de�ned with respect
to permutations� Functions f and g are said to be
equivalent� denoted by f � g if and only if there exists
a permutation � �of X  for which f � �g� Similarly�
algorithms A and B are said to be equivalent� denoted
by A � B if and only if there exists a permutation �
�of X  for which A � �B�

Let the equivalence class of function f be denoted by
�f �� and let the equivalence class of algorithm A be
denoted by �A�� To simplify notation� let A denote a
set of algorithms� let F denote a set of functions� and
de�ne V �A�F and V �A� f as follows

V �A�F � fV �A� f � f � Fg

V �A� f � fV �A� f � A � Ag

Since �f � � P �ffg� NFL applies� therefore� for any
given algorithms A and B�

V �A� �f � � V �B� �f �

It follows immediately from the de�nitions that if F
is closed under permutation and f � F then �f � � F �
Therefore the case above �i�e�� F � �f � is the �nest
level of granularity at which a No Free Lunch result can
hold� Moreover� any set F of functions closed under
permutation is a disjoint union of equivalence classes�
thus No Free Lunch results hold only over unions of
equivalence classes�

By de�nition and duality�

V ��A�� f � fV ��A� f � � is a permutationg

� fV �A� �f � � is a permutationg

� V �A� �f �

Bringing NFL into the picture yields the result that
for any given algorithms A and B�

V ��A�� f � V �A� �f � � V �B� �f � � V ��B�� f

It follows that for any given algorithm A and any given
function f � the following are identical�


 The average performance over all algorithms using
function f �




 The average performance over an arbitrary equiv�
alence class of algorithms using function f �


 The average performance over all functions in the
equivalence class �f � using algorithm A�

Moreover� the phrase �average performance� can be
replaced with �set of performance vectors� in the list
above� Whereas most No Free Lunch results have been
expressed in terms of some measure of performance� all
algorithms in fact display exactly the same behavior
over any set of functions closed under permutation in
the sense that the performance vectors are identical�

� NFL Equivalence Class Examples

In this section� some extreme examples of permutation
closure are presented� These examples not only illus�
trate applications of NFL� but also set the stage for
discussing the notion of problem description length�

For conciseness� a function will be represented by a
list of its output values �i�e�� as a sequence� the points
of the domain are implicitly the indices into the se�
quence�

The smallest permutation closures correspond to func�
tions that return a single value� For example�

f � h�� �� �� �i �� �f � � ffg

Such problems are in some sense uninteresting from
a search point of view� since a single evaluation auto�
matically determines the maximum and minimum of
the evaluation function�

The smallest sets corresponding to a permutation clo�
sure where the evaluation functions display variability
are needle�in�a�haystack functions� Such a function f
has the same evaluation �call it � everywhere except
at one point in the domain� where a better evaluation
is found �call it �� Since there is exactly one point in
the space with a di�erent evaluation� the size of �f � is
jX j� For example

f � h�� �� �� �i ��

�f � � fh�� �� �� �i� h�� �� �� �i� h�� �� �� �i� h�� �� �� �ig

An interesting class of functions is the set of decision
problems which return Boolean values �Y � f�� �g�
Note that NP�Complete problems are frequently de�
�ned as particular decision problems� This class is
in one�to�one correspondence with the set of length
N � j X j binary strings� and is therefore equal to its
permutation closure� It is moreover a disjoint union of

equivalence classes �f��� � � � � �fN � where

fi � h � � � � �� �z �
i times

� �� � � � � �i

j �fi� j �

�
N

i

�

As a �nal example� consider functions that are one�
to�one and onto� This class of functions also equals
its permutation closure� Without loss of generality�
X � Y and such functions are permutations� There
is a single equivalence class� namely �I � where I is the
identity function� and its size is N � �where N �jX j�

� Problem Description Length

The average description length for functions that are
members of a permutation closure is discussed in this
section� Although this is only done for select cases�
the cases illustrate the extremes in average description
length�

Whitley ��� has previously made �a variation on the
observation that given any permutation � �on X � the
permutation closure ��� is the set of all N� permuta�
tions� and the average description length for its mem�
bers is ��N lnN bits� where N � jX j�

A more general observation is that given any set F of
functions� the average description length of members
in P �F  is ��ln k bits� where k � jP �F  j�

An interesting question is� when is the the average
description length over the members of some permu�
tation closure polynomial and when it it exponential�
A correct� but somewhat circular answer� is that the
average description length is polynomial when ln k is
polynomial� Nevertheless� we can still use this idea to
examine average description length for examples which
provide bounding cases�

It has already been noted above that the average de�
scription length for permutations is ��N lnN bits�
Note� moreover� that an explicit de�nition of a per�
mutation �as a sequence� as described in the previous
section would take O�N lnN bits� there are N im�
ages �positions in the sequence to de�ne� and each
takes O�lnN bits �since there are N points in the
range� Therefore� on average� the permutation clo�
sure ��� contains incompressible functions� the average
description length of a member is the same order of
magnitude as the size of an explicit de�nition �as a
sequence�

At the other extreme is the permutation closure �f � of
a needle�in�a�haystack function f �described above�



Explicit de�nition of a member �of �f � requires ��N
bits� whereas the average description length is O�lnN
bits� Therefore members of this permutation closure
are highly compressible�

These two extreme cases illustrate that No Free Lunch
results are independent from whether or not the set of
functions �over which a No Free Lunch result holds is
compressible�

� Conclusions

No Free Lunch theorems in various equivalent forms
are reviewed� A duality result is proven and used to
obtain a sharpened No Free Lunch theorem� in the
sense that both necessary and su�cient conditions are
obtained�

It is proven that the permutation closure of a single
function is the �nest level of granularity at which a
No Free Lunch result can hold� The average descrip�
tion length of members of permutation closures is com�
puted �for select cases and is related to compressibil�
ity� It is seen that No Free Lunch results are inde�
pendent from whether or not the set of functions �over
which a No Free Lunch result holds is compressible�
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