
The Mathematics of Search

SFI�TR����������

David H� Wolpert �dhw�santafe�edu�
William G� Macready �wgm�santafe�edu�

The Santa Fe Institute
�	�� Hyde Park Road
Santa Fe
 NM
 �����

July ��
 ���

Abstract

We show that all algorithms that search for an extremum of a cost

function perform exactly the same� according to any performance mea�

sure� when averaged over all possible cost functions� In particular� if al�

gorithm A outperforms algorithm B on some cost functions� then loosely

speaking there must exist exactly as many other functions where B out�

performs A� Starting from this we analyze a number of the other a priori

characteristics of the search problem� like its geometry and its information�

theoretic aspects� This analysis allows us to derive mathematical bench�

marks for assessing a particular search algorithm�s performance� We also

investigate minimax aspects of the search problem� the validity of using

characteristics of a partial search over a cost function to predict future

behavior of the search algorithm on that cost function� and time�varying

cost functions� We conclude with some discussion of the justi�ability of

biologically�inspired search methods�

� Introduction

This section �rst presents the context in which we address the issue of search�
Since this is a lengthy paper� it then presents a roadmap to help the reader
absorb the results�

��� Background

Many problems can be cast as optimization over a �cost� or ��tness� function�
In such a problem� we are given such a function� f � X � Y �F being the
set of all such mappings�� For that f we seek the set of x� � X which give
rise to a particular y� � Y� Most often� we seek the x��s which extremize f

	

�this will often be implicitly assumed in this paper�� Physical examples of such
a problem include free energy minimization �Y
 �� over spin con�gurations
�X
 f�	��	gN�� or over bond angles �X
 f� � � � �gN �� etc� Examples
also abound in combinatorial optimization� ranging from number partitioning
to graph coloring to scheduling �
��

There are two common approaches to these optimization problems� The
�rst is a systematic construction of a good X value� x�� from good sub�solutions
specifying part of x�� The most celebrated method of this type is the branch
and bound algorithm ���� For this systematic and exhaustive approach to work
in reasonable time� one must have an e�ective heuristic� h�n�� representing the
quality of sub�solutions n� There is extensive theoretical work �		� linking the
cost function to the properties a heuristic must have in order to search e�ciently�

A second approach to optimization begins with a population of one or more
complete solutions x � X and the associated Y values sampled from the cost
function� and �tries to� iteratively improves upon those X values� The idea
is take a set of such pairs� decide where in X next to sample the cost func�
tion� observe the sample value there� and then iterate� So the only knowledge
concerning the cost function comes in through the samples� There are many
algorithms that are often used in this manner� including hill�climbing� simu�
lated annealing ���� and genetic algorithms ���� �One can always �tailor� these
algorithms to take into account direct knowledge of the cost function of course�
the issue addressed in this paper is how well the algorithm can be assured of
performing in the absence of such tailoring��

Intuitively� one would expect that for this class of algorithms to work e�ec�
tively� the biases in how they try to improve the population �i�e�� the biases in
how they search X � must �match� those implicit in the cost function they are
optimizing� However almost always these algorithms are directly applied� with
little or no modi�cation� to any cost function in a wide class of cost functions�
The particulars of the cost functions at hand are almost always ignored� As we
will demonstrate though� the �matching� intuition is true� the particulars of the
cost function are crucial� and blind faith in an algorithm to search e�ectively
across a broad class of problems is rarely justi�ed from a formal point of view�
�Although such lack of �rst principles justi�ability does not mean that such an
algorithm cannot work well in practice � see below��

Indeed� one might expect that there are pairs of search algorithms A and B
such that A performs better than B on average� even ifB sometimes outperforms
A� As an example� one might expect that hill�climbing usually outperforms hill�
descending if one�s goal is to �nd a maximum of the cost function� One might
also expect it would outperform a random search�

To measure the relative sizes of the set of cost functions for which A outper�
forms B and the set of cost functions for which B outperforms A� one could try
to delineate the two sets explicitly� and then calculate their sizes� This appears
a rather daunting task in general� Fortunately� there is a simple trick that lets
one say something about the relative sizes across the space of cost functions of
the two sets without writing down the two sets� Calculate the average� over the
space of cost functions� of whether A outperforms B or vice�versa�

�

As our central result demonstrates� this average equals �� regardless of the
choice of A or B or the performance measure� In this sense� the two sets in
question have the exact same size� So for example there are just as many cost
functions for which hill�climbing performs worse than randomly as there are for
which it performs better� Alternatively� this result says that if we do not take
into account any particular biases or properties of our cost function� then the
expected performance of all algorithms on that function are exactly the same
�regardless of the performance measure used��

In short� there are no �free lunches� for e�ective optimization� In practice�
one can always rely on serendipity� However one would like to do better� and
formally justify the contention that a particular algorithm will perform well� Our
result says that we can do this only to the degree that knowledge concerning
the cost function at hand has been incorporated into that algorithm� If no such
knowledge has been incorporated� then one has no formal reason to believe one�s
algorithm will perform well� For this reason �and to emphasize the parallel with
similar supervised learning results �	�� 	���� we have dubbed our central result
a �no free lunch� �NFL� theorem�

To prove the NFL theorem a framework has to be developed which addresses
the core aspects of search� This framework constitutes the �skeleton� of the op�
timization problem� it is what can be said concerning search before explicit
details of a particular real�world search problem are considered� The construc�
tion of such a skeleton provides a language to ask and answer formal questions
about search� some of which have never before even been asked� never mind
answered� �We pose and answer a number of such questions in this paper�� In
addition� such a skeleton indicates where the real �meat� of optimization lies�
It clari�es what the core issues are that underly the e�ectiveness of the search
process�

��� Layout of this paper

The paper is organized as follows� We begin in section � by presenting our
framework and using it to prove the NFL theorem� We prove the theorem for
both deterministic and stochastic search algorithms�

Section � gives a geometric interpretation of the NFL theorem� In particular�
in that section we provide a geometric meaning of what it means for an algorithm
to be well �matched� to a cost function�

The rest of the paper goes beyond the NFL theorem� It consists of a pre�
liminary investigation of the statistical nature of the search problem� using the
framework developed in section ��

In some circumstances the average behavior of algorithms is not an interest�
ing quantity by which to compare algorithms� Alternatively� averages may be
interesting� but it isn�t clear what distribution over cost functions to use to do
the averaging� We address such scenarios in section
 by investigating minimax
distinctions between algorithms� Such distinctions hold for any distribution over
cost functions�

�

Section � begins the exploration of some of the questions raised in section
�� Some of the answers lead naturally into results concerning the information
theoretic aspects of search� �In that those results are derived from the NFL
theorem� they illustrate the central importance of the NFL theorem in analyzing
optimization�� A myriad of other properties of search may be investigated using
techniques similar to those developed in this section� We list a sample of these
in Section ����

In Section � we turn to the important problem of assessing the performance
of particular search algorithms� We derive several benchmarks against which
to compare such an algorithm�s performance� We can not conceive of any valid
demonstration of the �absolute� �rather than relative� e�cacy of an algorithm
on some search problem that doesn�t use these �or similar� benchmarks�

Not all search problems are static� in some cases the cost function changes
over time� Section � extends our analysis to the case of such time dependent
cost functions�

In section � we provide some theorems valid for any single �xed cost function�
and therefore for any distribution over cost functions� These theorems state
that one can not use a search algorithm�s behavior so far on a particular cost
function to predict its future behavior on that function� When choosing between
algorithms based on their observed performance it does not su�ce to make
an assumption about the cost function� some �currently poorly understood�
assumptions are� also being made about how the algorithms in question are
related to each other and to the cost function�

Finally� we conclude in Section � with a general discussion of the implications
of our results� of its connection with similar work in the �eld of supervised
machine learning� and then of future directions for work�

��� Suggested reading order

The paper can be read in stages� A �rst reading might highlight the NFL theo�
rem and its broad implications� Such a reading should start with Section � for
an understanding of the NFL theorem� Eq� �	�� �In a �rst reading though� the
reader may wish to go through only the �rst� non�mathematical subsection of
that Section�� Next Section � could be read to provide a geometric understand�
ing of the theorem� This Section is absolutely critical for anyone wishing to
understand how the NFL results are consistent with the well�accepted fact that
many search algorithms that do not take into account knowledge concerning
the cost function work quite well in practice� �See also Section � for cautionary
comments concerning that �well�accepted fact��� Section
� which considers
minimax distinctions between algorithms and addresses limitations of the NFL
theorem� could be read next� Finally� Section ��	 discusses broad implications
of the NFL result�

A second reading might explore the potential richness of the framework
developed in Sections � and �� Such a reading should include section �� which
uses our framework to demonstrate some of the information theoretic aspects of

search� It would then move on to Section � which uses the framework to provide
useful benchmarks against which other algorithms may be compared�

A �nal reading would include subjects that may constitute fruitful extensions
of the framework developed in Sections � and �� Such a reading would include
section �� which extends the NFL results to a class of time�dependent cost
functions� It would also include section �� which probes what may be learned
from a limited amount of search over a single� speci�c� cost function� This
reading would conclude with Section ��� where we list many directions for future
extensions�

We should emphasize that our comparing algorithms based on their having
the same number of distinct evaluations of the cost function is simply our choice�
Although we consider it quite reasonable� we do not claim to be able to �prove�
that one should use it� in any sense� If someone wishes to compare algorithms
on some other basis� we wish them luck� However as an aside on one such com�
parison scheme� we note that comparing based on total evaluations�including
repeats�is fraught with di�culties� and results in all kinds of irrelevant a priori
distinctions between algorithms� �For example� it says that a global random
guesser is better than a hill�climber� averaged over all cost functions� simply
because the random guesser will retrace less��

There are a number of other formal approaches to the issues investigated
in this paper� in particular� the �eld of computational complexity� Unlike the
approach taken in this paper� computational complexity ignores the statistical
nature of search for the most part� and concentrates instead on computational
issues� Much �though by no means all� of computational complexity is con�
cerned with physically unrealizable computational devices �Turing machines�
and the worst case amount of resources they require to �nd optimal solutions�
In contrast� the analysis in this paper does not concern itself with the computa�
tional engine used by the search algorithm� but rather concentrates exclusively
on the underlying statistical nature of the search problem�

Future work would involve combining our concern for the statistical nature
of search with �realistic� concerns for computational resources�

Finally� we cannot emphasize enough that no claims whatsoever are being
made in this paper concerning how well various search algorithms work in prac�
tice� The focus of this paper is on what can be said a priori� from mathematical
principles alone� concerning the utility of a search algorithm�

� No Free Lunch Theorem for Search

��� Overview

All oracle�based search algorithms rely on extrapolating from an existing set of
m points and associated cost values� �x� y�m � �X �Y�m � to a new point x� � X
that hopefully has low cost �high cost if we�re searching for a maximum rather
than a minimum�� The extrapolation may be either deterministic or stochastic�
The analysis of such extrapolations can be formalized as follows�

�

For simplicity take X and Y to be �nite� De�ne dm � fdm�i�g � fdxm�i�� dym�i�g
for i
 	 � � �m to be a set of m distinct search points �i�e� cost evaluations� and
associated cost values ordered in some way �usually according to the time at
which they are generated� with the ordering index given by i� Let us call this a
population of size m� We denote the set of all populations of size m by Dm�

As above� let f indicate a single�valued function from X to Y� f � YX �
Note that there are a �nite number of f if jX j and jYj are �nite� At each stage
of a search algorithm� a new point x � X is chosen based on the members of
the current population d� the pair fx�� f�x��g is added to d� and the procedure
repeats�

Any search algorithm of the �second approach� discussed in the introduction
is a �perhaps probabilistic� mapping taking any population to a new point in
the search space� For simplicity of the presentation� we assume that the new
search point has not already been visited� �As discussed below� relaxing this
assumption does not a�ect our results�� So in particular a deterministic search
algorithm is a mapping a � d � D � fx jx �� dxg� where D � �mDm� and in
particular contains the empty set� For clarity of the exposition� in this paper
we will only explicitly consider such deterministic search algorithms� However
as discussed below� all our results also apply to stochastic algorithms�

Note that the population contains all points sampled so far� In particular�
in a conventional hill�climber that works by moving from x to that neighbor
of x with the highest �tness� it is necessary to evaluate the �tnesses of all the
neighbors of x� All those evaluated points are contained in the population� not
only x and the neighbor of x with highest �tness�

For deterministic algorithms and �xed single�valued cost functions� in many
respects there is no reason to employ probability theory �as we do here� rather
than simple counting arguments� However for the analysis to be extendible
to stochastic algorithms� distributions over cost functions� and the like� such
a probability�based analysis is essential� Accordingly� we use such an analysis
from the start� even though it is not needed right away�

It should also be noted that even though usually in real�world search we are
presented with a single cost function and know how to evaluate it� the cost func�
tion is e�ectively partially unknown� in that we certainly do not know everything
concerning the cost function �otherwise� for example� we could jump directly to
its extrema�� Less prosaically� we often act as though the cost function is par�
tially unknown� For example� we might use the same search algorithm for all cost
functions in a class �e�g�� all TSP problems having certain characteristics�� In
so doing� we are implicitly acknowledging that we consider distinctions between
the cost functions in that class to be irrelevent �or at least unexploitable�� In
this sense� even though we are presented with a single particular problem from
that class� we are acting as though we were instead presented with a probability
distribution over cost functions� a distribution that is non�zero only for members
of that class of cost functions� Our hope is that our algorithm will perform well
for cost functions sampled according to that distribution�

We are interested in the histogram� �c� of cost values that an algorithm� a�
obtains on a particular cost function� f � given m distinct cost evaluations� Note

�

that �c is given by the y values of the population� dym� and is a vector of length
jYj whose ith component is the number of members in the population dm hav�
ing cost fi� Once we have �c we can use it to assess the quality of the search in
any way we choose� �For example if we are searching for minima we might take
the lowest occupied bin in �c as our performance measure�� Consequently� we
are interested in the conditional probability that histogram �c will be obtained
under m iterations of algorithm a on f � This quantity is given by the condi�
tional probability P ��c j f�m� a�� Since we will show that �under the appropriate
average� this probability distribution is independent of a� so is any functional
of it� like the expected performance of the algorithm�

A natural question concerning this scenario is how F�� the set of f for which
some algorithm a� outperforms another algorithm a�� compares to F�� the set
of f for which the reverse is true� To perform the comparison� we use the
trick of comparing the sum over all f of P ��c j f�m� a�� to the sum over all
f of P ��c j f�m� a��� This comparison provides a major result of this paper�
P ��c j f�m� a� is independent of a when we average over all cost functions� In
other words� as is proven below�

Theorem� For any pair of algorithms a� and a��

X
f

P ��c j f�m� a��

X
f

P ��c j f�m� a��� �	�

An immediate corollary is that for any performance measure ���c�� the aver�
age over all f of P ����c� j f�m� a� is independent of a� So the precise way that
the histogram is mapped to a performance measure is irrelevant�

Note that the no free lunch result implies that if we know nothing about f �
then P ��c jm� a�� which is the probability we obtain histogram c after m distinct
cost evaluations of algorithm a� is independent of a� This follows from

P ��c jm� a�

X
f

P ��c j f�m� a�P �f jm� a�

X
f

P ��c j f�m� a�P �f�

�in the last step we have relied on the fact that the cost function doesn�t depend
on either m or a�� If we know nothing about f then all f are equally likely�
which means that for all f � P �f�
 	�jYjjXj� �More generally� P �f� re�ects our
�prior knowledge� concerning f �� Accordingly� for this �no knowledge� scenario�
P ��c jm� a�
 jYj�jXjPf P �c j f�m� a�� which is independent of a by the no free
lunch theorem�

Similarly� you can derive an NFL result for averaging over all priors� �More
formally� the result concerns averaging over all � the quantity P ��cjm���� where
� indexes the set of possible P �f��� In this� the uniform P �f� case is not some
�pathological case�� on the edge of the space� Rather it is the typical case�

Another immediate consequence of the NFL result is that the expected his�
togram E��c j f�m� a�

P
�c�c P ��c j f�m� a� is� on average� the same for all algo�

rithms� More generally� for any two algorithms� at the point in their search
where they have both created a population of size m� if algorithm a� has better

�

performance than algorithm a� over some subset � � F of functions� then a�
must perform better on the set of remaining functions F n �� So for example
if simulated annealing outperforms genetic algorithms on some set �� genetic
algorithms must outperform simulated annealing on F n�� As another example�
even if one�s goal is to �nd a maximum of the cost function� hill�climbing and
hill�descending are equivalent� on average�

A particularly striking example of this last point is the case where a� is
the algorithm of random search� The NFL result says that there are as many
f �appropriately weighted� for which the random algorithm outperforms your
favorite search algorithm as vice�versa� There are as many f for which your
algorithm�s guesses for where to search are worse than random as for which
they are better� The risk you take in choosing an algorithm is not that it may
perform randomly on the f at hand� but that it may very well perform even
worse�

Often in the real world one has some a priori knowledge concerning f � How�
ever only very rarely is that knowledge explicitly used to help set the algorithm�
The unreasonableness of this is demonstrated by the NFL theorem� which illus�
trates that even if we do know something about f �perhaps speci�ed through
P �f��� if we fail to explicitly incorporate that knowledge into a then we have no
assurances the a will be e�ective� we are simply relying on a fortuitous matching
between f and a� This point is formally established in sections � and �� which
make no assumptions whatsoever concerning P �f��

Many would readily agree that a must match P �f� � that statement borders
on the obvious� Similarly� it may seem obvious that if one uniformly averages
over all f � then all algorithms are equal� �The only reason it takes a whole
subsection to establish this formally is because there are a large number of
�obvious� things that must be mathematicized�� Yet the implications of the
statement are not so obvious� it is extremely easy to contradict them without
realizing you are doing so� This is why� for example� it can be surprising that hill�
climbing and hill�descending are equivalent on average� or that �smart� choosing
procedures perform no better than �dumb� ones �see section ��� In addition�
the geometric nature of the matching illustrates some interesting aspects of the
search problem �see below��

We emphasize that taking uniform averages over f �s is simply a tool for
investigating search� It is the only starting point we could think of for investi�
gating the �skeleton� of the search problem� before �assumptions for� the actual
distributions in the real world are put in� It should be obvious that we are not

claiming that all f �s are equally likely in the real world� and the signi�cance of
the NFL theorem in no way depends on the validity of such a claim�

Results for non�uniformP �f� are discussed below� after the proof of the NFL
theorem�

��� Proof for deterministic search

We now show that
P

f P ��c j f�m� a� has no dependence on a� Conceptually� the
proof is quite simple� the only reason it takes so long is because there is some

�

book�keeping involved� In addition� because many of our readers may not be
conversant with the techniques of probability theory we supply all the details�
lengthening it considerably�

The intuition is simple� by summing over all f the past performance of
an algorithm has no bearing on its future performance so that all algorithms
perform equally� The proof involves the following steps� First� we reduce the
distribution over �c values to one over dym values� Then we use induction to
establish the a�independence of the distribution over dym� The inductive step
starts by rearranging the distributions in question� Then f is broken up into
two independent parts� one for x � dxm and one for x �� dxm� These are evaluated
separately� giving the desired result�

Expanding over all possible y components of a population of size m� dym� we
see

X
f

P ��c j f�m� a�

X
f�dym

P ��c� dym j f�m� a�

Now P ��c� dym j f�m�
 P ��c j dym� f�m� a�P �dym j f�m� a�� Moreover� the probabil�
ity of obtaining a histogram �c given f � d� m and a� P ��c j dym� f�m�� depends only
on the y values of population dm� Therefore

X
f

P ��c j f�m� a�

X
f�dym

P ��c j dym�P �dym j f�m� a�

X
dym

P ��c j dym�
X
f

P �dym j f�m� a� ���

To prove that the expression in Eq� ��� is independent of a it su�ces to show
that for all m and dym�

P
f P �dym j f�m� a� is independent of a� since P ��c j dym� is

independent of a� We will prove this by induction on m�
For m
 	 we write the population as d�
 fdx� � f�dx��g where dx� is set by a�

The only possible value for dy� is f�dx��� so we have �

X
f

P �dy� j f�m
 	� a�

X
f

��dy�� f�dx���

where � is the Kronecker delta function�
Now when we sum over all possible cost functions ��dy�� f�dx��� is 	 only for

those functions which have cost dy� at point dx�� Therefore that sum equals
jYjjXj��� independent of dx��

X
f

P �dy� j f�m
 	� a�
 jYjjXj��

which is independent of a� This bases the induction�
We now establish the inductive step� that if

P
f P �dym j f�m� a� is indepen�

dent of a for all dym� then so also is
P

f P �dym�� j f�m�	� a�� This will complete
the proof of the NFL result�

�

We start by writing

P �dym�� j f�m � 	� a�
 P �fdym���	�� � � � � dym���m�g� dym���m � 	� j f�m � 	� a�

 P �dym� d
y
m���m � 	� j f�m � 	� a�

 P �dym���m � 	� j dm� f�m � 	� a�P �dym j f�m � 	� a�

so we have
X
f

P �dym�� j f�m � 	� a�

X
f

P �dym���m � 	� j dym� f�m � 	� a�P �dym j f�m � 	� a��

The new y value� dym���m � 	�� will depend on the new x value� f and
nothing else� So we expand over these possible x values� getting

X
f

P �dym�� j f�m�	� a�

X
f�x

P �dym���m � 	� j f� x�P �x j dym� f�m�	� a�

�P �dym j f�m � 	� a�

X
f�x

��dym���m � 	�� f�x��P �x j dym� f�m�	� a�

�P �dym j f�m � 	� a��

Next note that since x
 a�dxm� d
y
m�� it does not depend directly on f � Con�

sequently we expand in dxm to remove the f dependence in P �x j dym� f�m�	� a��

X
f

P �dym�� j f�m�	� a�

X

f�x�dxm

��dym���m � 	�� f�x��P �x j dm� a�P �dxm j dym� f�m � 	� a�

�P �dym j f�m � 	� a�

X
f�dxm

��dym���m � 	�� f�a�dm��� � P �dm j f�m� a�

where use was made of the fact that P �x j dm� a�
 ��x� a�dm�� and the fact that
P �dm j f�m � 	� a�
 P �dm j f�m� a��

We do the sum over cost functions f �rst� The cost function is de�ned both
over those points restricted to dxm and those points outside of dxm� P �dm j f�m� a�
will depend on the f values de�ned over points inside dxm while ��dym���m �
	�� f�a�dm��� depends only on the f values de�ned over points outside dxm�
�Recall that a�dxm� �� dxm�� So we have

X
f

P �dym�� j f�m�	� a�

X
dxm

X
f�x�dxm �

P �dm j f�m� a�

�
X

f�x��dxm �

��dym���m�	�� f�a�dm���� ���

The sum
P

f�x��dxm � contributes a constant� jYjjXj�m��� equal to the num�

ber of functions de�ned over points not in dxm passing through �dxm���m �

	�

	�� f�a�dm���� SoX
f

P �dym�� j f�m�	� a�
 jYjjXj�m��
X

f�x�dxm��dxm

P �dm j f�m� a�

	

jYj
X
f�dxm

P �dm j f�m� a�

	

jYj
X
f

P �dym j f�m� a�

By hypothesis the right hand side of this equation is independent of a� so the
left hand side must also be� This completes the proof of the NFL result�

We note in passing that the proof of the NFL theorem can be used to derive a
stronger result� Since the sum

P
f P �dym j f�m� a� is independent of a� it follows

that the histograms of cost values after m steps must also be independent of a�
However� it also follows that the distribution over time ordered populations �the
dym� are also identical for all a� So when the ordering of cost values is important
�e�g when you would like to get to low cost quickly� there is still no way to
distinguish between algorithms when we average over all f �

��� More general kinds of search

There are two restrictions on the de�nition of search algorithms used so far that
one might �nd objectionable� These are� i� the banning of algorithms that might
revisit the same points in X after placing them in dx� and ii� the banning of
algorithms that work stochastically rather than deterministically� Fortunately�
the NFL result can easily be extended to include either algorithms that revisit
points and�or are algorithms that are stochastic� So there is no loss of generality
in our de�nition of a �search algorithm��

To see this� say we have a deterministic algorithm a � d � D � fx jx � Xg� so
that given some �perhaps empty� d� the algorithm might produce a point x � dx�
Call such an algorithm �potentially retracing�� Given a potentially retracing
algorithm a� produce a new algorithm a� by �skipping over all duplications� in
the sequence of fx� yg pairs produced by the potentially retracing algorithm�
Formally� for any d� a��d� is de�ned as the �rst x value from the sequence
fa�	�� a�d�� a�a�d��� � � �g that is not contained in dx� So long as the original
algorithm a can not get stuck forever in some subset of d� we can always produce
such an a� from a� �We can �nd no reason to design one�s algorithm to not have
an �escape mechanism� that ensures that it can not get stuck forever in some
subset of d�� We will say that a� is a �compacted� version of a�

Now any two compacted algorithms are �search algorithms� in the sense the
term is used in the previous subsection� Therefore they obey the NFL result
of that subsection� So the NFL result in Eq� �	� holds even for potentially
retracing algorithms� if we rede�ne �m� in that equation to be the number of
distinct points in the dx�s produced by the algorithms� in question� and if we
rede�ne ��c� to be the histogram corresponding to those m distinct points�

		

Moreover� our real�world cost in using an algorithm is usually set by the
number of distinct evaluations of f�x�� So it makes sense to compare potentially
retracing algorithms not by looking at the d�s they produce after being run the
same number of times� but rather by looking at the d�s they produce after
sampling f�x� the same number of times� This is consistent with using our
rede�ned m and �c�

Note that the x at which a potentially retracing algorithm breaks out of a
cycle might be stochastic �e�g simulated annealing�� In this case the compacted
version of the algorithm is still well�de�ned� Only rather than being determinis�
tic� that compacted algorithm is stochastic� This brings us to the general issue
of how to adapt our analysis to address stochastic search algorithms�

Let � be a stochastic non�potentially retracting algorithm� Formally� this
means that � is a mapping taking any d to a �d�dependent� distribution over
X that equals zero for all x � dx� So � can be viewed as a �hyper�parameter��
specifying the function P �dxm���m � 	� j dm� �� for all m and d�

Given this de�nition of �� we can follow along with the derivation of the NFL
result for deterministic algorithms� just with a replaced by � throughout� Doing
so� everything still holds� So that NFL result holds even for stochastic search
algorithms� Therefore� by the same reasoning used to establish the no�free�lunch
result for potentially retracing deterministic algorithms� the no�free�lunch result
holds for potentially retracing stochastic algorithms�

� A geometric interpretation

Intuitively� the NFL theorem illustrates that even if we know something about
f �perhaps speci�ed through P �f�� but don�t incorporate that knowledge into
a� then we have no assurances that a will be e�ective� we are simply relying on
a fortuitous matching between f and a� This point is formally established by
viewing the NFL theorem from a geometric perspective�

Consider the space of possible cost functions� As mentioned before� the
probability of obtaining some histogram� �c� given m distinct cost evaluations
using algorithm a is

P ��c jm� a�

X
f

P ��c jm� a� f�P �f��

where P �f� is the prior probability that the optimization problem at hand has
cost function f � We can view the right�hand side of this equality as an inner
product in F �

Theorem� De�ne the F�space vectors �vc�a�m and �p by �vc�a�m�f� � P ��c jm� a� f�
and �p�f� � P �f�� Then

P ��c jm� a�
 �vc�a�m
 �p �
�

	�

This is an important equation� Any global knowledge you have about the
properties of your cost function goes into the prior over cost functions� �p� �c can
be viewed as �xed to the histogram you want to obtain �usually one with a low
cost value�� and m is given by the constraints on the time we have to run our
optimization algorithm� Thus the performance of an algorithm is determined by
the magnitude of its projection onto �p� by how �aligned� it is with the universe�s
P �f�� Alternatively� we can dispense with �c by averaging over it� to see that
E��c j m� a� is an inner product between �p�f� and E��c j m� a� f�� �Similarly
for any �performance measure� ���c�� In either case� we see that P �f� must
�match� a��

This explains how certain algorithms can perform well in practice despite
the NFL theorem� If the real world�s P �f� happens to be aligned well with
the algorithm� then the algorithm will perform well� If not� not� Of course�
simply hypothesizing that one�s favorite algorithm may be aligned with the real
world�s P �f� does not formally establish anything� For one to prove something
concerning how well one�s algorithm will perform in the real world one must
prove � � something concerning the real world�s P �f� � a daunting task to say
the least�

Unfortunately� exploiting the inner product formula in practice is a di�cult
exercise� Even coming up with a plausible P �f� can be di�cult� Consider�
for example� doing TSP problems with N cities� So we�re only considering
cost functions that correspond to such a problem� Now to the degree that any
practitioner would attack all N�city TSP cost functions with the same algorithm�
that practitioner implicitly ignores distinctions between such cost functions� In
this� that practitioner has implicitly agreed that the problem is one of how their
�xed algorithm does across the set of N�city TSP cost functions� rather than
of how well their algorithm does for some particular N�city TSP problem they
have at hand� In other words� they are acting as though the cost function were
not �xed� but is instead described by a P �f� that equals � for all cost functions
other than N�city TSP cost functions� However the details of P �f�� beyond
the fact that it is restricted to N�city TSP problems� may be very di�cult to
disentangle�

Taking the geometric view� the no free lunch result that
P

f P ��c j f�m� a�
is independent of a has the simple interpretation that for a particular �c and
m� all algorithms a have the same projection onto the diagonal� that is vc�a�m

�	
 cst��c�m�� For deterministic algorithms the components of vc�a�m �i�e�� the
probabilities that algorithm a gives histogram �c on cost function f after m
distinct cost evaluations� are all either � or 	 so the no free lunch result also
implies

P
f P

���c jm� a� f�
 cst��c�m�� Geometrically� this means that the length
of �vc�a�m is independent of a�

Thus all vectors �vc�a�m have the same length and lie on a cone with constant

projection onto �	� Because the components of �vc�a�m are binary we might also
view �vc�a�m as lying on the subset of the boolean hypercube having the same

hamming distance from ���
Now restrict attention to the set of algorithms that have the same probability

	�

of some particular �c� The algorithms in this set must lie in the intersection of
� cones�one about the diagonal� set by the no�free�lunch theorem� and one by
having the same probability for �c� This is in general an jFj � � dimensional
manifold �where we recall that jFj � jYjjXj is the number of possible cost
functions�� If we require equality of probability on yet more �c� we get yet more
constraints�

In Section � we calculate two quantities concerning the distribution of �vc�a�m
across vertices of this hypercube�

� Minimax distinctions between algorithms

The NFL theorem does not address minimax properties of search� For example�
say we�re considering two deterministic algorithms� a� and a�� It may very
well be that there exist cost functions f such that a��s histogram is much better
�according to some appropriate quality measure� than a��s� but no cost functions
for which the reverse is true� For the NFL theorem to be obeyed in such a
scenario� it would have to be true that there are many more f for which a��s
histogram is better than a��s than vice�versa� but it is only slightly better for
all those f � For such a scenario� in a certain sense a� has better �head�to�head�
minimax behavior than a�� there are f for which a� beats a� badly� but none
for which a� does substantially worse than a��

Formally� we say that there exists head�to�head minimax distinctions be�
tween two algorithms a� and a� i� there exists a k such that for at least
one f E��c j f�m� a�� � E��c j f�m� a��
 k� but there is no f such that
E��c j f�m� a�� � E��c j f�m� a��
 k� �A similar de�nition can be used if
one is instead interested in ���c� or dym rather than �c��

It appears that analyzing head�to�head minimax properties of algorithms is
substantially more di�cult than analyzing average behavior �like in the NFL
theorem�� Presently� very little is known about minimax behavior involving
stochastic algorithms� In particular� it is not known if in some sense a stochastic
version of a deterministic algorithm has better�worse minimax behavior than
that deterministic algorithm� In fact� even if we stick completely to deterministic
algorithms� only an extremely preliminary understanding of minimax issues has
been reached�

What we do know is the following� Consider the quantity
X
f

Pdy
m��

�dy
m��

�z� z� j f�m� a�� a���

for deterministic algorithms a� and a� �By PA�a� is meant the distribution of
a random variable A evaluated at A
 a�� For deterministic algorithms� this
quantity is just the number of f such that it is both true that a� produces a
population with Y components z and that a� produces a population with Y
components z��

In appendix B� it is proven by example that this quantity need not be sym�
metric under interchange of z and z��

	

Theorem� In general�X
f

Pdy
m��

�dy
m��

�z� z� j f�m� a�� a�� �

X
f

Pdy
m��

�dy
m��

�z�� z j f�m� a�� a��� ���

This means that under certain circumstances� even knowing only the Y compo�
nents of the populations produced by two algorithms run on the same �unknown�
f � we can infer something concerning what algorithm produced each population�

Now consider the quantityX
f

PC��C��z� z
� j f�m� a�� a���

again for deterministic algorithms a� and a�� This quantity is just the number of
f such that it is both true that a� produces a histogram z and that a� produces
a histogram z�� It too need not be symmetric under interchange of z and z� �see
appendix B�� This is a stronger statement then the asymmetry of dy�s statement�
since any particular histogram corresponds to multiple populations�

It would seem that neither of these two results directly implies that there are
algorithms a� and a� such that for some f a��s histogram is much better than
a��s� but for no f �s is the reverse is true� To investigate this problem involves
looking over all pairs of histograms �one for each f� such that there is the
same relative �quality� between both histograms� Simply having an inequality
between the sums presented above does not seem to directly imply that the
relative quality between the associated pair of histograms is asymmetric� �To
formally establish this would involve creating scenarios in which there is an
inequality between the sums� but no head�to�head minimax distinctions� Such
an analysis is beyond the scope of this paper��

On the other hand� having the sums equal does carry obvious implica�
tions for whether there are head�to�head minimax distinctions� For example�
if both algorithms are deterministic� then for any particular f Pdy

m��
�dy
m��

�z�� z� j
f�m� a�� a�� equals 	 for one �z�� z�� pair� and � for all others� In such a case�P

f Pdym���d
y

m��
�z�� z� j f�m� a�� a�� is just the number of f that result in the pair

�z�� z��� So
P

f Pdym���d
y

m��
�z� z� j f�m� a�� a��

P
f Pdym���d

y

m��
�z�� z j f�m� a�� a��

implies that there are no head�to�head minimax distinctions between a� and a��
The converse does not appear to hold however��

As a preliminary analysis of whether there can be head�to�head minimax
distinctions� we can exploit the result in appendix B� which concerns the case
where jX j
 jYj
 �� First� de�ne the following measure of the �quality� over
two�element populations� Q�dy���

�Consider the grid of all �z� z�� pairs� Assign to each grid point the number of f that result
in that grid point�s �z� z�� pair� Then our constraints are i� by the hypothesis that there are no
head�to�head minimax distinctions� if grid point �z�� z�� is assigned a non�zero number� then
so is �z�� z��� and ii� by the no�free�lunch theorem� the sum of all numbers in row z equals
the sum of all numbers in column z� These two constraints do not appear to imply that the
distribution of numbers is symmetric under interchange of rows and columns� Although again�
like before� to formally establish this point would involve explicitly creating search scenarios
in which it holds�

	�

i� Q�y�� y��
 Q�y�� y��
 ��

ii� Q�y�� y��
 Q�y�� y��
 ��

iii� Q of any other argument
 	�

In appendix B we show that for this scenario there exist pairs of algorithms a�
and a� such that for one f a� generates the histogram fy�� y�g and a� generates
the histogram fy�� y�g� but there is no f for which the reverse occurs �i�e�� there
is no f such that a� generates the histogram fy�� y�g and a� generates fy�� y�g��

So in this scenario� with our de�ned measure of �quality�� there are minimax
distinctions between a� and a�� For one f the quality of algorithms a� and a�
are respectively � and �� The di�erence in the Q values for the two algorithms
is � for that f � However there are no other f for which the di�erence is ��� For
this Q then� algorithm a� is minimax superior to algorithm a��

It is not currently known what restrictions on Q�dym� are needed for there
to be minimax distinctions between the algorithms� As an example� it may well
be that for Q�dym�
 maxifdym�i�g there are no minimax distinctions between
algorithms�

More generally� at present nothing is known about �how big a problem�
these kinds of asymmetries are� All of the examples of the asymmetries arise
when the set of X values a� has visited overlaps with those that a� has visited�
Given such overlap� and certain properties of how the algorithms generated the
overlap� asymmetry arises� A precise speci�cation of those �certain properties�
is not yet in hand� Nor is it known how generic they are� i�e�� for what percentage
of pairs of algorithms they arise� Although such issues are easy to state �see
appendix B�� it is not at all clear how best to answer them�

However consider the case where we are assured that in m steps two par�
ticular algorithms do not overlap� Such assurances hold� for example� if we are
comparing two hill�climbing algorithms that start far apart �on the scale of m�
in X � It turns out that given such assurances� there are no asymmetries between
the two algorithms for m�element populations� To see this formally� go through
the argument used to prove the NFL theorem� but apply those arguments to
the quantity

P
f Pdym���d

y

m��
�z� z� j f�m� a�� a�� rather than P ��c j f�m� a�� Doing

this establishes the following�

Theorem� If there is no overlap between dxm�� and dxm��� then

X
f

Pdy
m��

�dy
m��

�z� z� j f�m� a�� a��

X
f

Pdy
m��

�dy
m��

�z�� z j f�m� a�� a��� ���

An immediate consequence of this theorem is that under the no�overlap con�
ditions�

P
f PC��C��z� z

� j f�m� a�� a�� is symmetric under interchange of z and
z�� as are all distributions determined from this one over C� and C� �e�g�� the
distribution over the di�erence between those C�s extrema��

Note that with stochastic algorithms� if they give non�zero probability to all
dxm� there is always overlap to consider� So there is always the possibility of
asymmetry between algorithms if one of them is stochastic�

	�

� Information theoretic aspects of search

We �rst calculate the fraction of cost functions which give rise to a speci�c
histogram �c using algorithm a with m distinct cost points� This calculation
allows us� for example� to answer the following question�

�What fraction of cost functions will give a particular distribution of cost
values after m distinct cost evaluations chosen by using a genetic algorithm!�

This may seem an intractable question� but the NFL result allows us to
answer it� It does this because it means that the fraction is independent of the
algorithm So we can answer the question by using an algorithm for which the
calculation is particularly easy�

The algorithm we will use is one which visits points in X in some canonical
order� say x�� x�� � � � � xm� Recall that the histogram �c is speci�ed by giving the
frequencies of occurrence� across the x�� x�� � � � � xm� for each of the jYj possible
cost values�

Now the number of f �s giving the desired histogram under our speci�ed
algorithm is just the multinomial giving the number of ways of distributing the
cost values in �c� At the remaining jX j�m points in X the cost can assume any
of the jYj f values�

It will be convenient to de�ne �� � �
m�c� Note that this is invariant if the

contents of all bins in �c are scaled by the same amount� By the argument of the
preceding paragraph� the fraction we are interested in� �f ����� is given by the
following�

Theorem� For any algorithm� the fraction of cost functions that result in the
histogram �c
 m�� is given by

�f ����

�
m

c� c� ��� cjYj

�jYjjXj�m
jYjjXj

�
m

c� c� ��� cjYj

�
jYjm � ���

Accordingly� �f ���� can be related to the entropy of �c in the standard way
by using Stirling�s approximation to order O�	�m�� which is valid when all of
the ci are large�

ln

�
m

c� c�

 cjYj

�
�
 m lnm�

jYjX
i��

ci ln ci �
	

�

h
lnm �

jYjX
i��

ln ci
i

�
 mS���� �
	

�

h�
	� jYj� lnm �

jYjX
i��

ln�i

i

where S����
 �PjYj
i���i ln�i is the entropy of the histogram �c� Thus for large

enough m� the fraction of cost functions is given by the following formula�

	�

Corollary�

�f ���� �
 C�m� jYj� emS����

QjYj
i�� �

���
i

� ���

where C�m� jYj� is a constant depending only on m and jYj�
If some of the ��i are �� Eq� ��� still holds� only with Y rede�ned to exclude

the y�s corresponding to the zero�valued ��i� However Y is de�ned� the normal�
ization constant of Eq� ��� can be found by summing over all �� lying on the
unit simplex� The details of such a calculation can be found in �	���

We next turn to a related question�

�On a given vertex of f�space �i�e�� for a given cost function�� what is the
fraction of all algorithms that give rise to a particular �c!�

For this question� the only salient feature of f is its histogram �formed by

looking across all X � of cost values� Specify this histogram by �	� there are
Ni
 	i jX j points in X for which f�x� has the i�th Y value�

Call the fraction we are interested in �alg���� �	�� It turns out that �alg���� �	�
depends to leading order on the Kullback�Liebler �distance� ��� between �� and
�	� To see this� we start with the following intuitively reasonable result� formally
proven in appendix A�

Theorem� For a given f with histogram �N
 jX j�	� the fraction of algorithms
that give rise to a histogram �c
 m�� is given by

�alg���� �	�

QjYj
i��

�
Ni

ci

�
�jXj
m

� � ���

The normalization factor in the denominator is simply the number of ways of
selecting m cost values from X ��

The product of binomials can be approximated via Stirling�s equation when
both Ni and ci are large�

ln

jYjY
i��

�
Ni

ci

�
�

jYjX
i��

�	

�
ln �
 � Ni lnNi � ci ln ci � �Ni � ci� ln�Ni � ci� �

	

�

�
lnNi � ln�Ni � ci�� ln ci

�
�

We assume ci�Ni � 	� which is reasonable when m � jXj� So using the
expansion ln�	� z�
 �z � z���� � � �� to second order in ci�Ni we have

�It can also be determined from the identity
P

�c
��
P

i
ci�m�

Q
i

�
Ni
ci

�
�
�P

i
Ni

m

�
�

	�

ln

jYjY
i��

�
Ni

ci

�
�

jYjX
i��

ci ln
�Ni

ci

�� 	

�
ln ci � ci � 	

�
ln �

� ci
�Ni

�
ci � 	 �

�

In terms of �� and �	 we �nally obtain �using m�jX j � 	�

ln

jYjY
i��

�
Ni

ci

�
�
 �mDKL���� �	� � m �m ln

� m
jX j

�� jYj
�

ln �

�
jYjX
i��

	

�
ln��im� �

m

�jX j
��i
	i

�
�	� �im �

��

where DKL���� �	� � P
i �i ln�	i��i� is the Kullback�Liebler distance between

the distributions �� and �	�
Thus the fraction of algorithms is given by the following�

Corollary�

�alg���� �	� �
 C�m� jX j� jYj� e�mDKL�������QjYj
i�� �

���
i

� �	��

where the constant C depends only on m� jX j� and jYj�
As before� C can be calculated by summing �� over the unit simplex�

� Measures of algorithm performance

In this section we calculate certain �benchmark� performance measures that
allow us to assess the e�cacy of any search algorithm�

Consider the case where low cost is preferable to high cost� Then in general
we are interested in P �min��c� � � j f�m� a�� which is the probability that the
minimum cost an algorithm a �nds in m distinct evaluations is larger than
�� given that the cost function is f � We consider three quantities that are
related to this conditional probability that can be used to gauge an algorithm�s
performance�

i� The �rst quantity is the average of this probability over all cost functions�

ii� The second is the form this conditional probability takes for the random
algorithm� whose behavior is uncorrelated with the cost function�

iii� The third is the fraction of algorithms which� for a particular f and m�
result in a �c whose minimum exceeds ��

	�

These measures give us benchmarks which all truly �intelligent� algorithms
should surpass when used in the real world� any algorithm that doesn�t surpass
them is doing a very poor job�

Recall that there are jYj distinct cost values� With no loss of generality
assume the i�th cost values equals i� So cost values run from a minimum of 	
to a maximum of jYj in integer increments�

The �rst of our benchmark measures isP
f P �min��c� � � j f�m� a�P

f 	

P
dym �f

P �min�dym� � � j dym�P �dym j f�m� a�

jYjjXj �		�

where in the last line we have marginalized over y values of populations of size
m and noted that min�c�
 min�dym��

Now consider
P

f P �dym j f�m� a�� The summand equals � or 	 for all f and
deterministic a� In particular� it equals 	 if the following conditions are met

i� f�dxm�	��
 dym�	�

ii� f�a�dm�	���
 dym���

iii� f�a�dm�	�� dm�����
 dym���

� � �

These restrictions will always �x the value of f�x� at exactly m points� f is
completely free at all other points� Therefore

X
f

P �dym j f�m� a�
 jYjjXj�m�

Using this result in Eq� �		� we �nd

X
f

P �min��c� � � j f�m�

	

jYjm
X
dym

P ��min�dym� � � j dym�

	

jYjm
X

dym�min�dym���

	

	

jYjm �jYj � ��m�

This establishes the following�

Theorem� X
f

P �min��c� � � j f�m�

m���� �	��

where
��� � 	� ��jYj is the fraction of cost lying above ��

An immediate corollary is the following�

��

Corollary� In the limit of jYj �
�

P
f E�min��c� j f�m�

jYj

	

m � 	
� �	��

Proof sketch� Write
P

f E�min��c� j f�m�

PjYj

��� � �
m�� � 	� �
m���� and
substitute in for
��� Then replace � throughout with � � 	� This turns our

sum into
PjYj��

��� �� � 	� ��	� �
�Yj �

m � �	 � ���
�Yj �m�� Next� write jYj
 b�" for

some b� Multiply and divide our summand by "� To take the limit of " � ��
apply L�hopital�s rule to the ratio in the summand� Next use the fact that " is
going to � to cancel terms in the summand� Carrying through the algebra� and

dividing by b�"� we get a Riemann sum of the form m
b�

R b
� dx x�	 � x�b�m���

Evaluating the integral gives the result claimed� QED�

In a real world scenario� unless one�s algorithm has its best�cost�so�far drop
faster than the drop associated with these results� one might argue that that
algorithm is not searching very well� After all� the algorithm is doing no better
than one would expect it to for a randomly chosen cost function� �Benchmarks
that take account of the actual cost function at hand are presented below��

Next we calculate the expected minimum of the cost values in the pop�
ulation as a function of m for the random algorithm� #a� which picks points
in X completely randomly� using no information from the current population�
Marginalizing over histograms �c� the performance of #a is

P �min��c� � � j f�m� #a�

X
�c

P �min��c� � � j�c�P ��c j f�m�#a�

Now P ��c j f�m� #a� is the probability of obtaining histogram �c in m random

draws from the histogram �N of the function f � �This can be viewed as the

de�nition of #a�� This probability has been calculated previously as

QjYj

i��
�Nici �

�jXjm ��
�

So

P �min��c� � � j f�m�#a�

	�
jXj
m

�
mX

c���

mX

cjYj��

��

jYjX
i��

ci�m�P �min��c� � � j�c�

�
jYjY
i��

�
Ni

ci

�

	�
jXj
m

�
mX

c���

mX

cjYj��

��

jYjX
i��

ci�m�

jYjY
i��

�
Ni

ci

�

�PjYj

i��
Ni

m

�
�
jXj
m

� �see footnote one�

�	

�
�
	���jXj

m

�
�
jXj
m

�
�	
�

This establishes the following�

Theorem� For the random algorithm #a�

P �min��c� � � j f�m� #a�

m��Y
i��

$���� i�jX j
	� i�jX j � �	��

where $��� �PjYj
i��Ni�jX j is the fraction of points in X for which f�x� � ��

To �rst order in 	�jX j this theorem gives the following result�

Corollary�

P �min�c� � � j f�m�#a�
 $m���
�
	� m�m � 	��	�$����

�$���

	

jX j � � � �
�
� �	��

Note that these results allow us to calculate other quantities of interest� like

E �min��c� j f�m� #a�

jYjX
���

� �P �min��c� � � j f�m� #a� � P �min��c� � � � 	 j f�m� #a���

These results also provide a useful benchmark against which any algorithm
may be compared� Note in particular that for many cost functions cost values
are distributed Gaussianly� For such a case� if the mean and variance of the
Gaussian are � and � respectively� then $���
 erfc�������

p
������ where erfc

is the complimentary error function�
To calculate the third performance measure� note that for �xed f and m� for

any �deterministic� algorithm a� P ��c � � j f�m� a� is either 	 or �� Therefore
the fraction of algorithms which result in a �c whose minimum exceeds � is given
by

P
a P �min��c� � � j f�m� a�P

a 	
�

Expanding in terms of �c� we can rewrite the numerator of this ratio asP
�c P �min��c� � � j �c� P

a P ��c j f�m� a�� However the ratio of this quantity
to
P

a 	 is exactly what we calculated when we evaluated measure ii� �see the
beginning of the argument deriving Eq� �	���� This establishes the following�

Theorem� For �xed f and m� the fraction of algorithms which result in a �c
whose minimum exceeds � is given by the quantity on the right�hand sides of
Eqs� �	�� and �	���

��

So in particular� consider the scenario where� when evaluated for � equal
to the minimum of the �c produced in a particular run of your algorithm� the
quantity given in Eq� �	�� is less than 	��� For such a scenario� your algorithm
has done worse than over half of all search algorithms� for the f and m at hand�

Finally� we present a measure explicitly designed to �track� an algorithm�s
performance as m increases� Here we are interested in whether� as m grows�
there is any change in how well the algorithm�s performance compares to that
of the random algorithm�

Say the population generated by the algorithm a after m steps is d� and
de�ne y� � min��c�d��� Let k be the number of additional steps it takes the
algorithm to �nd an x such that f�x� � y�� Now we can estimate the number
of steps it would have taken the random search algorithm to search X � dX
and �nd a point whose y was less than y�� The expected value of this number
of steps is �

z�d� � 	� where z�d� is the fraction of X � dX for which f�x� � y��

Therefore k� 	� 	�z�d� is how much worse a did than would have the random
algorithm� on average�

So now imagine letting a run for many steps over some �tness function f �
We wish to make a plot of how well a did in comparison to the random algorithm
on that run� as m increased� Consider the step where a �nds its n�th new value
of min��c�� For that step� there is an associated k �the number of steps until the
next min��c�� and z�d�� Accordingly� indicate that step on our plot as the point
�n� k�	�	�z�d��� Put down as many points on our plot as there are successive
values of min��c�d�� in the run of a over f �

If throughout the run a is always a better �match� to f than is the random
search algorithm� then all the points in the plot will have their ordinate values lie
below �� If the random algorithm won for any of the comparisons though� that
would mean a point lying above �� In general� even if the points all lie to one
side of �� one would expect that as the search progresses there is corresponding
�perhaps systematic� variation in how far away from � the points lie� That
variation tells one when the algorithm is entering harder or easier parts of the
search�

Note that even for a �xed f � by using di�erent starting points for the al�
gorithm one could generate many of these plots and then superimpose them�
This would allow you to plot the mean value of k � 	� 	�z�d� as a function of
n along with an associated error bar� �Similarly� one could replace the single
number z�d� characterizing the random algorithm with a full distribution over
the number of required steps to �nd a new minimum��

� Time�dependent cost functions

Here we establish a set of no free lunch results for a certain class of time�
dependent cost functions� The time�dependent functions we are concerned with
start with an initial cost function that is present when we sample the �rst x
value� Then just before the beginning of each subsequent iteration of the search

��

algorithm� the cost function is deformed to a new function� as speci�ed by the
mapping T � F �N � F �� We write the function present during the sampling
of the ith point as fi��
 Ti�fi�� We assume that at each step i� Ti is a bijection
between F and F � �Note the mapping induced by T from F to F can vary with
the iteration number�� If this weren�t the case� the evolution of cost functions
could narrow in on a region of f �s for which some algorithm� �by luck� as it
were� happens to sample x values that lie near the extremizing x�

One di�culty with analyzing time�dependent cost functions is how to as�
sess the quality of the search algorithm� In general there are two histogram�
based schemes� involving two di�erent populations of y values� As before� the
population dym is an ordered set of y values corresponding to the x values in
dxm� The particular y value in dym matching a particular x value in dxm is
given by the cost function that was present when x was sampled� In con�
trast� the population Dy

m is de�ned to be the y values from the present cost
function for each of the x values in dxm� Formally if dxm
 fdxm�	��

 � dxm�m�g
then we have dym
 ff��dxm�	���

 � Tm���fm����dxm�m��g� Similarly� we have
Dy
m
 fTm���fm����dxm�	���

 � Tm���fm����dxm�m��g�

In some situations it may be that the members of the population �live� for
a long time� on the time scale of the evolution of the cost function� In such
situations it may be appropriate to judge the quality of the search algorithm
with the histogram induced by Dy

m� all those previous elements of the population
are still alive� and therefore their �current� �tness is of interest� On the other
hand� if members of the population live for only a short time on the time scale
of evolution of the cost function� one may instead be concerned with things
like how well the living member�s� of the population track the changing cost
function� In that kind of situation� it may make more sense to judge the quality
of the search algorithm with the histogram induced by dym�

Here we derive NFL results for both criteria� In analogy with the NFL
theorem� we wish to average over all possible ways a cost function may be
time�dependent� i�e�� we wish to avenge over all T �rather than over all f � as
in the NFL theorem�� So consider the sum

P
T P ��c j� f�� T�m� a� where f� is

the initial cost function� Note �rst that since T only kicks in for m � 	� and
since f� is �xed� there are a priori distinctions between algorithms as far as
the �rst member of the population is concerned� So consider only histograms
constructed from those elements of the population beyond the �rst� We will
prove the following�

Theorem� For all �c� m � 	� algorithms a� and a�� and initial cost functions f��

X
T

P ��c j f�� T�m� a��

X
T

P ��c j f�� T�m� a��� �	��

We will show that this results holds whether �c is constructed from dym or

�An obvious restriction would be to require that T doesn�t vary with time� so that it is a
mapping simply from F to F� An analysis for T �s limited this way is beyond the scope of this
paper however�

�

from Dy
m� In analogy with the proof of the NFL theorem� we will do this by

establishing the a�independence of
P

T P ��c j f� T�m� a��
We will begin by replacing each T in the sum with a set of cost functions� fi�

one for each iteration of the algorithm� To do this� we start with the following�

X
T

P ��c j f� T�m� a�

X
T

X
dxm

X
f� ���fm

P ��c j �f � dxm� T�m� a�

�P �f�

fm� dxm j f�� T�m� a�

X
dxm

X
f����fm

P ��c j �f � dxm�P �dxm j �f �m� a�

�
X
T

P �f�

fm j f�� T�m� a��

where we have indicated the sequence of cost functions� fi� by the vector �f

�f��

 � fm��

Next we decompose the sum over all possible T into a series of sums� Each
sum in the series is over the values T can take for one particular iteration of the
algorithm� More formally� using fi��
 Ti�fi�� we write

X
T

P ��c j f� T� m � a�

X
dxm

X
f����fm

P ��c j �f � dxm�P �dxm j �f�m� a�

�
X
T�

��f�� T��f���

X
Tm��

��fm� Tm���Tm���

T��f������

�Note that
P

T P ��c j f� T�m� a� is independent of the values of Ti�m��� so we
can absorb those values into an overall a�independent proportionality constant��

Now look at the innermost sum� over Tm��� for some �xed values of the
outer sum indices T� � � �Tm��� Now for �xed values of the outer sum indices
Tm���Tm���

T��f���� is just some �xed cost function� Accordingly the in�
nermost sum over Tm�� is simply the number of bijections of F that map that
�xed cost function to fm� This is just a constant� �jFj � 	� �

So we can do the Tm�� sum� and arrive at

X
T

P ��c j f� T� m � a�� �
X
dxm

X
f����fm

P ��c j �f � dxm�P �dxm j �f �m� a�

�
X
T�

��f�� T��f���

X
Tm��

��fm��� Tm���Tm���

T��f������

Now we can do the sum over Tm��� in the exact same manner we just did
the sum over Tm��� In fact� all the sums over all Ti can be done� leaving us
with

X
T

P ��c j f� T�m � a�� �
X
dxm

X
f����fm

P ��c j �f � dxm�P �dxm j �f �m� a�

��

X
dxm

X
f����fm

P ��c j �f � dxm�P �dxm j f�

fm���m� a�� �	��

�In the last step we have exploited the statistical independence of dxm and fm��
To proceed further we must decide if we are interested in histograms formed

from Dy
m or dym� We begin with analysis of the Dy

m case� For this case P ��c j
�f � dxm�
 P ��c j fm� dxm�� since Dy

m only re�ects cost values from the last cost
function� fm� Plugging this in we get

X
T

P ��c j f� T�m� a�� �
X
dxm

X
f����fm��

P �dxm j f�

fm���m� a�
X
fm

P ��c j fm� dxm�

The �nal sum over fm is a constant equal to the number of ways of generating
the histogram c from cost values drawn from fm� This constant will involve the
multinomial coe�cient

�
m

c����cm

�
and some other factors� The important point is

that it is independent of the particular dxm� Because of this we can evaluate the
sum over dxm and thereby eliminate the a dependence�

X
T

P ��c j f� T�m� a� �
X

f����fm��

X
dxm

P �dxm j f�

fm���m� a� � 	

This completes the proof of Eq� �	�� for the case where �c is constructed from
Dy
m�

Next we turn the case where we are interested not in Dy
m but in dym� This

case is considerably more di�cult since we can not simplify P ��c j �f � dxm� and
thus can not decouple the sums over fi� Nevertheless� the NFL result still holds�
To see this we begin by expanding Eq� �	�� over possible dym values�

X
T

P ��c j f� T�m� a� �
X
dxm

X
f����fm

X
dym

P ��c j dym�P �dym j �f � dxm�

�P �dxm j f�

fm���m� a�

X
dym

P ��c j dym�
X
dxm

X
f����fm

P �dxm j f�

fm���m� a�

�
mY
i��

��dym�i�� fi�d
x
m�i��� �	��

The sum over the inner�most cost function� fm� only has an e�ect on the
��dym�i�� fi�dxm�i��� term� So it contributes

P
fm

��dym�m�� fm�dxm�m���� This is

a constant� equal to jYjjXj��� We are left withX
T

P ��c j f� T�m� a� �
X
dym

P ��c j dym�
X
dxm

X
f����fm��

P �dxm j f�

fm���m� a�

�
m��Y
i��

��dym�i�� fi�d
x
m�i����

��

The sum over dxm�m� is now trivial� so we have

X
T

P ��c j f� T�m� a�

�
X
dym

P ��c j dym�
X
dxm���

X

dxm�m���

X
f����fm��

P �dxm�� j f�

fm���m� a�

�
m��Y
i��

��dym�i�� fi�d
x
m�i����

Now note that the above equation is of the exact same form as Eq� �	���
only with a remaining population of size m�	 rather than m� Consequently� in
an exactly analogous manner to the scheme we used to evaluate the sums over
fm and dxm�m� that existed in Eq� �	��� we can evaluate our sums over fm��
and dxm�m� 	�� Doing so simply generates more a�independent proportionality
constants� Continuing in this manner� we evaluate all the sums over the fi and
arrive at

X
T

P ��c j f� T�m� a�� �
X
dym

P ��c j dym�
X
dxm���

P �dxm�	� j m� a� ��dym�	�� f��d
x
m�	����

Now there is still algorithm�dependence in this result� However it is a trivial
dependence� as previously discussed� it arises completely from how the algorithm
selects the �rst x point in its population� dxm�	�� Since we consider only those
points in the population that are generated subsequent to the �rst� our result
says that there is no distinctions between algorithms� �Alternatively� we could
consider all points in the population� even the �rst� and still get an NFL result�
if in addition to summing over all T we sum over all f��� So even in the case
where we are interested in dym the NFL result stills hold� subject to the minor
caveats delineated above�

There are others way of assessing the quality of the search algorithm besides
histograms based on Dy

m or dym� For example� one may wish to not consider
histograms at all� one may judge the quality of the search by the �tness of the
most recent member of the population�

Similarly� there are other sums one could look at besides those over T � For
example� one may wish to characterize what the aspects are of the relation�
ship between a and T that determine

P
f P ��c j f� T�m� a�� In fact� in general

there can be a priori distinctions between algorithms as far as this quantity is
concerned�

As an example of such distinctions� say that for all iterations of the search
algorithm� T is the shift operator� replacing f�x� by f�x � 	� for all x �with
min�x� � 	 � max�x�� and with X implicitly taken to be a contiguous set of
integers�� For this T � if a is the algorithm that �rst samples f at x�� next
at x� � 	� etc�� regardless of the values in the population� then for any f � the
histogram induced by dym is always made up of identical Y values� Accordingly�

��

P
f P ��c j f� T�m� a�
 � for any �c containing counts in more than one Y value

bin� For other search algorithms� even for the same shift T � there is not this
restriction on the set of allowed �c� So

P
f P ��c j f� T�m� a� is not independent of

a in general�
Indeed� consider the same shift T � but used with a di�erent algorithm� %a�

This new algorithm looks at the Y value of the its �rst sample point x�� and if
that value is low� it samples at x� � 	� exactly like algorithm a� On the other
hand� if that value is high� it samples some point other than x� � 	� In general�
if one�s goal is to �nd minimal Y values� %a can be expected to outperform a�
even when one averages over all f �

� Fixed cost function results

One obvious di�culty with the NFL results discussed above is that one can
always argue �oh� well in the real world P �f� is not uniform� so the NFL results
do not apply� and therefore I�m okay in using my favorite search algorithm��
Of course� the premise does not follow from the proposition� Uniform P �f� is
a typical P �f�� �The uniform average of all P �f� is the uniform P �f��� So
the actual P �f� might just as easily be one for which your algorithm is poorly
suited as one for which it is well suited� Simply assuming P �f� is not uniform
can not justify an algorithm� In essence� you must instead make the much bigger
assumption that P �f� doesn�t fall into the half of the space of all P �f� in which
your algorithm performs worse than the uniform P �f��

Ultimately� the only way to justify one�s search algorithm is to argue in
favor of a particular P �f�� and then argue that your algorithm is well suited to
that P �f�� This is the only � � legitimate way of defending a particular search
algorithm against the implications of the NFL theorems�

Nonetheless� it is clearly of interest to derive NFL�type results that are inde�
pendent of P �f�� Certain such results apply to ways of choosing between search
algorithms� and involve averaging over those search algorithms while keeping
the cost function �xed� Although less sweeping than the NFL results� these
results hold no matter what the real world�s distribution over cost functions is�

Let a and a� be two search algorithms� De�ne a �choosing procedure� as
one that examines two populations d and d�� produced by a and a� respectively�
and based on those populations� decides to use either a or a� for the subsequent
part of the search� As an example� one choosing procedure is to choose a if and
only the least cost element in d has lower cost than the least cost element in d��
As another example� a �stupid� choosing procedure would choose a if and only
the least cost element in d has higher cost than the least cost element in d��

At the point that you use a choosing procedure� you will have sampled the
cost function at all the points in d� � d � d�� Accordingly� if d�m refers to
the samples of the cost function that come after using the choosing algorithm�
then the histogram the user is interested in is the histogram c�m which is the
histogram formed from d�m� In addition� for all the usual reasons� we can
assume that the search algorithm chosen by the choosing procedure does not

��

return to any points in d�� without loss of generality
�
The following theorem� proven in appendix C� tells us we have no a priori

justi�cation for using any particular choosing algorithm� Loosely speaking� no
matter what the cost function� observing how well an algorithm has done so far
tells us nothing about how well it would do if we continue to use it on the same
cost function� �For simplicity� we only consider deterministic algorithms��

Theorem� Let d and d� be two �xed populations both of size m� that are
generated when the algorithms a and a� respectively are run on the cost function�
Let A and B be two di�erent choosing procedures� Let k be the number of
elements in c�m� Then

X
a�a�

P �c�m j f� d� d�� k� a� a�� A�

X
a�a�

P �c�m j f� d� d�� k� a� a�� B�� ����

�It is implicit in this theorem that the sum excludes those algorithms a and a�

that do not result in d and d� respectively when run on f ��
One might think that the preceding theorem is misleading� since it treats all

populations equally� when for any given f some populations will be more likely
than others� However even if one weights populations according to their proba�
bility of occurrence� it is still true that� on average� the choosing procedure one
uses has no e�ect on likely c�m� This is established by the following corollary�

Corollary� Under the conditions given in the preceding theorem�

X
a�a�

P �c�m j f�m� k� a� a�� A�

X
a�a�

P �c�m j� f�m� k� a� a�� B�� ��	�

Proof� Let �proc� refer to our choosing procedure� We are interested in

X
a�a�

P �c�m j f�m� k� a� a�� proc�

X

a�a��d�d�

P �c�m j f� d� d�� k� a� a�� proc�

�P �d� d� j f� k�m� a� a�� proc��

Pull the sum over d and d� outside the sum over a and a�� Consider any term
in that sum �i�e�� any particular pair of values of d and d��� For that term�
P �d� d� j f� k�m� a� a�� proc� is just 	 for those a and a� that result in d and d�

respectively when run on f � and � otherwise� �Recall that we are assuming that
a and a� are deterministic�� This means that the P �d� d� j f� k�m� a� a�� proc�

�a can know to avoid the elements it has seen before� However a priori� a has no way to
avoid the elements it hasn�t seen yet but that a� has �and vice�versa�� Rather than have the
de�nition of a somehow depend on the elements in d� � d �and similarly for a��� we deal with
this problem by de�ning c�m to be set only by those elements in d�m that lie outside of
d�� �This is similar to the procedure we developed above to deal with potentially retracing
algorithms�� Formally� this means that the random variable c�m is a function of d� as well
as of d�m� It also means there may be fewer elements in the histogram c�m than there are
in the population d�m�

��

factor simply restricts our sum over a and a� to the a and a� considered in our
theorem� Accordingly� our theorem tell us that the summand of the sum over d
and d� is the same for choosing procedures A and B� Therefore the full sum is
the same for both procedures� QED�

These results tell us that there is no assumption for P �f� that� by itself�
justi�es using some choosing procedure as far as subsequent search is concerned�
To have an intelligent choosing procedure� one must take into account not only
P �f� but also the search algorithms one will be choosing among�

These results also have interesting implications if one considers the �degen�
erate� choosing procedures A � falways use algorithm ag� and B � falways use
algorithm a�g� This case means that for �xed f� and f�� if f� does better �on
average� with the algorithms in some set A� then f� does better �on average�
with the algorithms in the set of all other algorithms� In particular� if for some
favorite algorithms a certain �well�behaved� f results in better performance
than does the random f � then that well�behaved f gives worse than random

behavior on the set all remaining algorithms�
In fact� things may very well be worse than this� In supervised learning�

there is a result related to the theorem above �	��� Translated into the current
context that result suggests that if one restricts the sums to only be over those
algorithms that are a good match to P �f�� then stupid choosing procedures &
like choosing the algorithm with the less desirable �c & outperform �smart� ones
�which are the ones everyone uses in practice�� An investigation of what exactly
the set of algorithms summed over must be for a smart choosing procedure to
be superior to a dumb one is beyond the scope of this paper� But clearly there
are many subtle issues to disentangle�

	 Discussion and Future Work

��� Discussion

In this paper we present a framework for investigating search� This framework
serves as a �skeleton� for the search problem� it tells us what we can know
about search before ��eshing in� the details of a particular real world search
problem� Phrased di�erently� it provides a language in which to describe search
algorithms� and in which to ask �and answer� questions about them�

Ultimately� of course� the only important question is� �How do I �nd good
solutions for my given cost function f!� The proper answer to this question is to
start with the given f � determine certain salient features of it� and then construct
a search algorithm� a� speci�cally tailored to match those features� The inverse
procedure � far more popular in some communities � is to investigate how
speci�c algorithms perform on di�erent f �s� This inverse procedure is only of
interest to the degree that it helps us with our primary procedure� of going from
�features concerning� f to an appropriate a�

Note that often the �salient features� concerning f can be stated in terms
of a distribution P �f�� To understand this� �rst note that we do in fact know

��

f exactly� But at the same time� there is much about f that we need to know
that is e�ectively unknown to us �e�g�� f �s extrema�� In this� it is as though f is
partially unknown� The very nature of the search process is to admit that you
don�t �know� f in full� As a result� it makes sense to �implicitly or otherwise�
replace f with a distribution P �f�� In this� the search problem reduces to �nding
a good a for a particular P �f� � exactly the issue addressed in Section � of this
paper�

As an example of all this� it is well known that generic methods �like sim�
ulated annealing and genetic algorithms� are unable to compete with carefully
hand�crafted solutions for speci�c search problems� The Traveling Salesman
Problem �TSP� is an excellent example of such a situation� the best search
algorithms for the TSP problem are hand�tailored for it �	��� Linear program�
ming problems are another example� the simplex algorithm is a search algorithm
speci�cally designed to solve cost functions of a particular type� In both of these
situations� the procedure followed by the researcher is to� identify salient as�
pects of f �e�g�� it is a TSP problem� or it is a linear programming problem��
throw away all other knowledge concerning f and thereby e�ectively replace f
with a P �f�� and then use a search algorithm explicitly known to work well for
that P �f��

In other words� one admits that in a certain sense f is not completely known
�for example� its extrema aren�t known�� and therefore one replaces it with a
P �f�� For example� if one has a particular Traveling Salesman Problem �TSP�
problem at hand� one would instead pretend that one simply has a general TSP
problem � particulars unknown � and use an algorithm well�suited to TSP
problems in general�

In our investigation of the search problem from this match�a�to�f perspec�
tive� the �rst question we addressed was whether it may be that some algorithm
A performs better than B� on average� without any concern for matching the
algorithm to the cost function at hand� Our answer to this question� given by
the NFL theorem is that this is impossible� An important implication of this re�
sult is the �conservation� nature of search� illustrated by the following example�
If a genetic algorithm outperforms simulated annealing over some class of cost
functions �� then over the remaining cost functions F n�� simulated annealing
must outperform the genetic algorithm� It should be noted that this conser�
vation applies even if one considers �adaptive� search algorithms ��� 	�� which
modify their search strategy based on properties of the population of �X � Y�
pairs observed so far in the search� and which perform this �adaptation� without
regard to any knowledge concerning salient features of f �

It is important to bear in mind exactly what all of this does �not� imply
about the relationship between natural selection in the biological world and
optimization �i�e� genetic algorithms�� To this end� consider the extremely
simpli�ed view in which natural selection is viewed as optimization over a cost or
��tness� function� We further simplify matters by assuming the �tness function
is static over time�

In this paper we measure an algorithm�s performance based on all X val�
ues it has sampled since it began� and therefore we don�t allow an algorithm

�	

to resample points it had already visited� Our NFL theorem states that all
algorithms are equivalent by this measure� However one might consider di�er�
ent measures� In particular� we may be primarily interested in the evolution
through time of �generations� consisting of temporally contiguous subsets of
our population� generations that are updated by our search algorithm�

In such a scenario� it does make sense to resample points already visited�
Moreover� our NFL theorem does not apply to this alternative kind of perfor�
mance measure� For example� according to this alternative performance mea�
sure� an algorithm that resamples old points in X that are �t and adds them to
the current generation will always do better than one that resamples old points
that are not �t�

Now when we examine the biological world around us� we are implicitly using
this second kind of measure� we only see the organisms from the current genera�
tion� In addition� natural selection means that only �essential characteristics of�
good points in X are kept around from one generation to the next� Accordingly�
using this second kind of performance measure� one expects that the average
�tness across a generation improves with time� �Or would if the environment
� i�e�� cost function � didn�t change in time� etc�� This is nothing more than
the tautology that natural selection improves the �tness of the members of a
generation�

However the evidence garnered from examining the world around us that
natural selection performs well according to this generation�based measure does
notmean anything concerning its performance according to the �c�based measure
used in this paper� In particular� it does not mean that if we wish to do a search�
and are able to keep around all points sampled so far� that we have any reason
to believe that natural selection is an e�ective search strategy� Yet it is precisely
this situation that is of interest in the engineering world�

In short� the empirical evidence of the biological world does not indicate in
any sense that natural selection is an e�ective search strategy� It does not even
indicate that natural selection is an e�ective search strategy in the biological
world� We simply have not had a chance to observe the behavior of alternative
strategies� According to the NFL theorem� for all we know� the strategy of
breeding only the least �t members of the population may have done a better
job at �nding the extrema of the cost function faced by biological organisms�
�This is exactly analogous to the fact that hill�descending can beat hill�climbing
at �nding �tness maxima�� The breed�the�worst strategy will in general result
in worse recent generations� but simply the fact that you are using that strategy
implies nothing about the quality of the populations over the long term�

In this regard� note that to fairly compare the breed�the�worst strategy with
natural selection� one would have to allow the breed�the�worst strategy to exploit
the same massive amount of parallelism exploited by natural selection in the
real world� where there are a huge number of genomes evolving in parallel� It
may well be that the �blind watchmaker� has managed to produce such an
amazing biome simply by relying on massive parallelism rather than breed�
the�best� Nobody knows� nobody has tried to measure �how well� natural
selection works in the biological world before� Indeed� presumably the e�cacy

��

of natural selection vs� breed�the�worst varies from ecosystem to ecosystem�
it may well be that when the measurements are �nally done we will �nd that
natural selection wins in some ecosystems but breed�the�worst wins in others�

On the other hand� if we relax the unrealistic assumption that the �tness
function is constant over time� then it is possible that there may be advantages
to using natural selection rather than a breed�the�worst strategy� regardless of
the ecosystem� �Such advantages could arise from the fact that the cost func�
tion is being determined in part by the population� so that the �matching� of
search algorithm and cost function required by the inner product formula may
somehow be automatic�� Similarly� that strategy may have minimax disadvan�
tages relative to natural selection�s breed�the�best strategy� Alternatively� it
may turn out that breed�the�worst has advantages over natural selection for
varying �tness functions and�or minimax concerns� These are issues for future
research�

To summarize� by the NFL theorem� any generation�based scheme that keeps
only the worst members of the population for the next generation is equivalent
to one that keeps the best members� on average� However� the �tness of the
members of the generations will di�er between the two search algorithms� This
raises some obvious questions for future research� Averaged over all f � how big
would one expect the di�erence to be! For a �xed f � and two identical random
search algorithms that are �directed� di�erently in who they classify as being
in the current generation� how big would one expect the di�erence to be! How
does this last calculation compare with the calculation made above of what the
best member of the population will �likely� be for a random algorithm as m
grows!

��� Future work

It is perhaps �tting for a paper about e�ective search that we conclude with a
brief listing of other �research� directions we believe warrant further investiga�
tion�

The most important continuation of this work is to turn our framework into
a practical tool to solve real problems� This would involve two steps� First we
need a method of incorporating broad kinds of knowledge concerning f into the
analysis� In this paper we have used P �f� to do this� but perhaps there are other
ways that we should also consider� For example� it is not yet clear how to �or
even whether one should� encapsulate in a P �f� the knowledge concerning the
cost function that is implicit in the heuristics of Branch and Bound strategies�
How do we incorporate how the cost of a complete solution �f� is accrued
through the assemblage of sub�solutions!

The second step in this suggested program is to determine how best to
convert knowledge concerning f into an optimal a� The goal in its broadest sense
is to design a system that can take in such knowledge concerning f and then solve

for the optimal a given that knowledge� �For example� if the knowledge were
in the form of P �f�� one would �invert� the inner product formula somehow��
One would then use that a to search the f �

��

In its fullest sense� this program may well involve many years of work�
Nonetheless� there are many important questions related to this program that
should be analyzable using only the tools developed in this paper� Many of
them were presented in the text� Others� particularly well�suited to help us
understand the connection between P �f� and an optimal a� are� How fast does
the cost histogram �c associated with a particular algorithm converge to the his�
togram of the cost values f takes on across all of X! As P �f� changes from the
diagonal in f space �i�e�� from being uniform over all f�� how will certain a�s be
hurt and certain a�s helped! Could the average over all a�s improve! For what
P �f��s besides the diagonal are all algorithms equal! Given two particular al�
gorithms �rather than all algorithms�� for what P �f� is the performance of the
algorithms equal! In particular� if P �f� is uniform over some subset � � F
and zero outside ��� what are the equivalence classes of search algorithms with
identical expected behavior!

As a preliminary step in this program� it would make sense to explore the
e�cacy of currently popular search algorithms in terms of the performance
benchmarks we present above� For any algorithm� as the search progresses� the
�tness of the best member of the population can only improve� So all previous
studies showing that �tness does improve in time for some algorithm a really
don�t prove anything� What�s important is how much better the improvement
is than you would expect it to be solely due to the ��ttest can only improve�
e�ect� That�s what our measures are designed to assess�

Recent experience in the supervised learning community is suggestive in
this regard� In supervised learning� one is given an input space and an output
space and a set of samples of a probabilistic relationship between the two� and
from those samples one wishes to infer �something concerning� that relationship
between the spaces� This is clearly closely related to the search problem� Indeed�
from a formal point of view� the search problem as we have formulated it is
almost identical to to �active� supervised learning� in which where in the input
space the samples are located is under the user�s control�

Assuming this parallel between the formal frameworks of supervised learning
and search carries over to practice� some of the recent work in the supervised
learning community ��� 	�� 	�� implies that on a signi�cant fraction of the prob�
lems in the standard test suites for search� one or more of the currently popular
search algorithms will fail to perform well� at least for some range of population
sizes� Things should be even worse if one randomly samples from the space of
real�world search problems� This is because there are �selection e�ects� ensur�
ing that the most commonly studied search problems �i�e�� those in the suites�
are those which people consider �reasonable�� in practice� �reasonable� often
simply means �a good match to the algorithms I�m familiar with��

Another interesting series of questions concerns di�erences between stochas�
tic and deterministic algorithms� Are there potential advantages to stochas�
tic algorithms! In particular� does it make sense to �expand� any stochas�
tic algorithm � in terms of deterministic algorithms a! I�e�� can one write

�As an example� 	 might be the set of correlated cost functions as in
��
�

�

P �c j f�m� ��

P

a ka��P �c j f�m� a� for some expansion coe�cients ka��! If
so� it suggests that as P �f� moves from the diagonal the performance of ��s will
neither improve nor degrade as much as that of a�s� So it may be that stochastic
algorithms have certain minimax advantages over deterministic ones�

There are many other issues that remain to be investigated concerning head�
to�head minimax distinctions between algorithms� Perhaps the simplest is to
characterize when such distinctions occur in �cycles�� in which algorithm A is
�head�to�head minimax� superior to B� and B to C� but then C is also superior
to A� Arguments for choosing between algorithms based on head�to�head min�
imax distinctions are more persuasive in the absence of such cycles� However
it should be noted that even if there are such cycles� if �to carry on with the
example� for some reason algorithmC can be ruled out as a candidate algorithm
�e�g�� it takes too long to compute� or is di�cult to deal with� or simply is not in
vogue�� then the fact that we have a cycle does not preclude choosing algorithm
A based on head�to�head minimax distinctions�

Other issues to be explored involve the relation between the statistical view
of search adopted in this paper and conventional statistics� In particular the
�eld of optimal experimental design �	� and more precisely active learning ���
is concerned with the following question� There is some unknown probabilistic
relationship between X and Y� I have a set of pairs of X �Y values formed by
sampling that relationship �the �training set��� At what next X value should I
sample the relationship to �best� help me infer the full X �Y relationship! This
question of how best to conduct active learning is obviously very closely related
to the search problem� future work involves seeing what results in the �eld of
active learning can be fruitfully applied to search�

Consider again Eq� �
�� The left�hand side is what we are interested in �or
more generally� what we want to know is set by it�� The �rst term on the right�
hand side is set by one�s algorithm� Accordingly� this equation provides several
ways to measure how �close� two algorithms are to one another� As an example
of such a measure� one could simply say that how close two algorithms are is
given by how close their vectors �vc�a�m are� Alternatively� one could measure
the closeness of two algorithms for a speci�c P �f�� by seeing how close the ��c�
indexed� vectors P ��c j m� a� are for those two algorithms� for that P �f�� �One
could imagine that for some P �f� two algorithms will be close� while for others
they will be far apart�� As a �nal example� given an algorithm� one could solve
for the P �f� that optimizes P ��c j m� a� in some non�trivial sense� One could
then see how close the optimal P �f��s are for two algorithms� and use this to
measure the closeness of the algorithms themselves�

With these kinds of measures� one could say things like �this algorithm is
very close to simulated annealing� even though its internal workings are com�
pletely di�erent�� One could also investigate hypotheses like �all algorithms that
humans consider �reasonable� are close to one another�� Future work involves
exploring these measures of the closeness of algorithms�

Other future work involves exploring the importance of the �encoding�
scheme one uses during search� Normally one talks of how the cost function
is encoded� and possible changes to that encoding� However in the context of

��

this paper� changing the encoding means changing the search algorithm� The
cost function doesn�t change when we re�encode � rather how we �the algo�
rithm� view the function changes�

Nonetheless� one can imagine several ways to couple re�encoding of algo�
rithms with �re�encodings� of cost functions� For example� if ��a� is a re�
encoding of algorithm a� then one might say that a cost function f becomes
��f� under that same re�encoding i� P ��c j f�m� a�
 P ��c j ��f��m� ��a�� for
all �c� �Alternatively� one might say that ��a� is a legal re�encoding scheme for
algorithms i� there is an associated ��f� for which the foregoing is true�� Fu�
ture work here involves seeing how changing the encoding scheme interacts with
P �f� to determine the e�cacy of the search process�

Uniform P �f� can be rewritten as P �f�
 'xP
��f�x��� where P ��y� is

uniform over all y � Y� An interesting question for future research is to see
which of the results of this paper must be modi�ed �and how� if we still have
P �f�
 'xP

��f�x�� but no longer have uniform P ��y�� �Intuitively� for such
a P �f�� f�x� is being set after you pick x as the next point to visit� and this
is being done without any regard for points you�ve already seen� Hence� one
would expect NFL�results to hold�� Related questions are� what is the most
general P �f� for which all algorithms are equal! what is the most general P �f�
for which a particular pair of algorithms are equal! and what happens if rather
than equal 'xP

��f�x��� P �f� involves some nearest neighbor coupling!
In relation to the �rst and last of these questions� it seems plausible that

there are P �f��s that not can be written as 'xP
��f�x�� but for which it is still

true that all algorithms are equal� For example� say jYj � jX j and let P �f� be
i� uniform over all f such that for no x�� x� � X does f�x��
 f�x��� and ii�
zero for all f that don�t obey this condition� This P �f� has extremely strong
coupling between the elements of the population� in contrast to P �f��s that can
be written as 'xP

��f�x��� Yet it seems likely that these P �f��s also result in
NFL�type results� since the points you have seen so far tell you nothing about
where you should search next�

In this paper the choice of P �f� �uniform� was motivated by theoeretical
rather than practical concerns� Yet these broader classes of P �f��s for which
NFL�type results might hold raise an intriguing question� just how far can one
push from the uniform P �f� to a more �real�world� P �f� and still have NFL�
type results!

Finally� there are many other NFL�type results� for uniform P �f�� that we
have not had time to explicate here� For example� consider algorithms that
keep running until some stopping condition� a function of all populations up to
the present� is met� Then intuitively� by NFL� one would expect that averaged
over all f � the probability that your algorithm stop after m samples of f is
independent of the algorithm being used� The formal proof of these �and similar�
results is the subject of future work�

Acknowledgments

We would like to thank Raja Das� Tal Grossman� Paul Helman� and Unamay

��

O�Reilly for helpful conversation� and the SFI for funding� DHW would also
like to thank TXN Inc� for funding�

References

�	� J�O� Berger� Statistical Decison Theory and Bayesian Analysis� Springer�
Verlag �	�����

��� D� Cohn� Neural Network Exploration Using Optimal Experimental De�

sign� MIT AI Memo� 	
�	�

��� T� Cover� J� Thomas� Elements of Information Theory� John Wiley (
Sons� �	��	��

�
� M�R� Garey� D�S� Johnson� Computers and Intractability� Freeman �	�����

��� J� Holland� Adaptation in Natural and Arti�cial Systems� University of
Michigan Press� Ann Arbor� �	�����

��� L� Ingber� Adaptive Simulated Annealing� Software package documenta�
tion� ftp�alumni�caltech�edu��pub�ingber�asa�tar�gz�

��� S� Kirkpatrick� C� D� Gelatt Jr�� M� P� Vecchi� Science� ���� ��	� �	�����

��� R� Kohavi� personal communication� Also see A Study of Cross�Validation

and Bootstrap for Accuracy Estimation and Model Selection� to be pre�
sented at IJCAI 	����

��� E�L� Lawler� D�E� Wood� Operations Research� ���
�� �����	�� �	�����

�	�� P� Murphy� M� Pazzani� Journal of Arti�cial Intelligence Research� �� ����
��� �	��
��

�		� J� Pearl� Heuristics� intelligent search strategies for computer problem solv�

ing� Addison�Wesley� �	��
��

�	�� Gerhard Reinelt� The Traveling Salesman� computational solutions for

TSP applications� Springer Verlag Berlin Heidelberg �	��
��

�	�� C� Scha�er� Conservation of Generalization� A Case Study�

�	
� P�F� Stadler� Europhys� Lett� ��� pp
���
��� �	�����

�	�� C�E�M� Strauss� D�H� Wolpert� D�R� Wolf� Alpha� Evidence� and the
Entropic Prior in Maximum Entropy and Bayesian Methods� ed� Ali
Mohammed�Djafari� pp		��	��� �	�����

�	�� D H� Wolpert� O��training set error and a priori distinctions between

learning algorithms� Technical Report SFI�TR�����	����� Santa Fe Insti�
tute� 	����

��

�	�� D H� Wolpert� On Over�tting Avoidance as Bias� Technical Report SFI�
TR����������	� Santa Fe Institute� 	����

�	�� D� Yuret� M� de la Maza� Dynamic Hill�Climbing� Overcoming the limi�
tations of optimization techniques in The Second Turkish Symposium on

Arti�cial Intelligence and Neural Networks� pp�����	�� �	�����

A Proof related to information theoretic aspects

of search

We want to calculate the proportion of all algorithms that give a particular �c
for a particular f � We proceed in several steps�

	� Since X is �nite� populations are �nite� Therefore any �deterministic� a
is a huge � but �nite � list� That list is indexed by all possible d�s �aside from
those that extend over the entire input space�� Each entry in the list is the x
the a in question outputs for that d�index�

�� Consider any particular unordered set of m x�y pairs where no two of the
pairs share the same x value� Such a set is an �unordered path�
� �Without
loss of generality� from now on we implicitly restrict the discussion to unordered
paths of length m�� A particular
 is �in� or �from� a particular f if there
is a unordered set of m �x� f�x�� pairs identical to
� The numerator on the
right�hand side of Eq� ��� is the number of unordered paths in the given f that
give the desired �c�

�� Claim� The number of unordered paths in f that give the desired �c � the
numerator on the right�hand side of Eq� ��� � is proportional to the number of
a�s that give the desired �c for f � �The proof of this claim will constitute a proof
of Eq� ����� Furthermore� the proportionality constant is independent of f and
�c�

� Proof� We will construct a mapping � � a �
� � takes in an a that
gives the desired �c for f � and from it produces a
 that is in f and gives the
desired �c� We will then show that for any
 the number of algorithms a such
that ��a�

 is a constant� independent of
� f � and �c� The proof will then be
completed by showing that � is single�valued� i�e�� by showing that there is no
a who has as image under mapping � more than one
�

�� Any unordered path
 gives a set of m di�erent ordered paths in the
obvious manner� �Note that every x value in an unordered path is distinct��
Each such ordered path
ord in turn provides a set of m successive d�s �if one
includes the null d� and a following x� Indicate by d�
ord� this set of the �rst
m d�s provided by
ord� �Note that any
ord is itself a population� but to avoid
confusion we avoid referring to it as such��

�� For any ordered path
ord we can construct a �partial algorithm�� This
consists of the list of an a� but with only the m d�
ord� entries in the list �lled
in� the remaining entries are blank� �We say that m is the �length� of the
partial algorithm�� Since there are m distinct partial a�s for each
 �one for

��

each ordered path corresponding to
�� we have m such partially �lled�in lists
for each
�

�� In the obvious manner we can talk about whether a particular partial
algorithm is �consistent� with a particular full algorithm� This allows us to
de�ne �the inverse of� �� for any
 that is in f and gives �c� ����
� � �the set
of all a that are consistent with at least one partial algorithm generated from

and that give �c when run on f��

�� To complete the �rst part of our proof we must show that for all
 that
are in f and give �c� ����
� contains the same number of elements� regardless of

� f � or c� To that end� �rst generate all ordered paths induced by
 and then
associate each such ordered path with a distinct m�element partial algorithm�
Our question is how many full algorithms lists are consistent with at least one
of these partial algorithm partial lists� �How this question is answered is the
core of this appendix��

�� To answer this question� reorder the entries in each of the partial algorithm
lists by permuting the indices d of all the lists� Obviously such a reordering won�t
change the answer to our question�

�� We will perform the permuting by interchanging pairs of d indices� First�
interchange any d index of the form ��dX�	�� dY �	��� � � � � �dX�i � m�� dY �i �
m��� whose entry is �lled in in any of our partial algorithm lists with d��d� �
��dX �	�� z�� � � � � �dX�i�� z��� where z is some arbitrary constant Y value and xj
refers to the j�th element of X � Next� create some arbitrary but �xed order�
ing of all x � X � �x�� � � � � xjXj�� Then interchange any d� index of the form
��dX �	�� z� � � � � �dX�i � m�� z� whose entry is �lled in in any of our �new� partial
algorithm lists with d���d�� � ��x�� z�� � � � � �xm� z��� �Recall that all the dX�i�
must be distinct��

	�� By construction� the resultant partial algorithm lists are independent
of
� �c and f � as is the number of such lists �it�s m �� Therefore the number
of algorithms consistent with at least one partial algorithm list in ����
� is
independent of
� c and f � This completes the �rst part of the proof�

		� For the second part� �rst choose any � unordered paths that di�er from
one another� A and B� There is no ordered path Aord constructed from A that
equals an ordered path Bord constructed from B� So choose any such Aord and
any such Bord � If they disagree for the null d� then we know that there is no
�deterministic� a that agrees with both of them� If they agree for the null d�
then since they are sampled from the same f � they have the same single�element
d� If they disagree for that d� then there is no a that agrees with both of them�
If they agree for that d� then they have the same double�element d� Continue
in this manner all the up to the �m�	��element d� Since the two ordered paths
di�er� they must have disagreed at some point by now� and therefore there is
no a that agrees with both of them�

	�� Since this is true for any Aord from A and any Bord from B� we see that
there is no a in ����A� that is also in ����B�� This completes the proof�

��

B Proof related to minimax distinctions between

algorithms

The proof is by example�
Consider three points in X � x�� x�� and x�� and three points in Y � y�� y�� and

y��

	� Let the �rst point a� visits be x�� and the �rst point a� visits be x��

�� If at its �rst point a� sees a y� or a y�� it jumps to x�� Otherwise it jumps
to x��

�� If at its �rst point a� sees a y�� it jumps to x�� If it sees a y�� it jumps to
x��

Consider the cost function that has as the Y values for the three X values
fy�� y�� y�g� respectively�

For m
 �� a� will produce a population �y�� y�� for this function� and a�
will produce �y�� y���

The proof is completed if we show that there is no cost function so that
a� produces a population containing y� and y� and such that a� produces a
population containing y� and y��

There are four possible pairs of populations to consider�

i� ��y�� y��� �y�� y����

ii� ��y�� y��� �y�� y����

iii� ��y�� y��� �y�� y����

iv� ��y�� y��� �y�� y����

Since if its �rst point is a y� a� jumps to x� which is where a� starts� when a��s
�rst point is a y� its second point must equal a��s �rst point� This rules out
possibilities i� and ii��

For possibilities iii� and iv�� by a��s population we know that f must be of
the form fy�� s� y�g� for some variable s� For case iii�� s would need to equal
y�� due to the �rst point in a��s population� However for that case� the second
point a� sees would be the value at x�� which is y�� contrary to hypothesis�

For case iv�� we know that the s would have to equal y�� due to the �rst
point in a��s population� However that would mean that a� jumps to x� for its
second point� and would therefore see a y�� contrary to hypothesis�

Accordingly� none of the four cases is possible� This is a case both where
there is no symmetry under exchange of dy�s between a� and a�� and no sym�
metry under exchange of histograms� QED�

�

C Proof related to NFL results for
xed cost

functions

Since any �deterministic� search algorithm is a mapping from d � D to x � X �
any search algorithm is a vector in the space XD� The components of such a
vector are indexed by the possible populations� and the value for each component
is the x that the algorithm produces given the associated population�

Consider now a particular population d of size m� Given d� we can say
whether any other population of size greater than m has the �ordered� elements
of d as its �rst m �ordered� elements� The set of those populations that do start
with d this way de�nes a set of components of any algorithm vector a� Those
components will be indicated by a�d�

The remaining components of a are of two types� The �rst is given by those
populations that are equivalent to the �rst M � m elements in d for some M �
The values of those components for the vector algorithm a will be indicated by
a	d� The second type consists of those components corresponding to all remain�
ing populations� Intuitively� these are populations that are not compatible with
d� Some examples of such populations are populations that contain as one of
their �rst m elements an element not found in d� and populations that re�order
the elements found in d� The values of a for components of this second type
will be indicated by a
d�

Let proc be either A or B� We are interested in

X
a�a�

P �c�m j f� d�� d�� k � a� a�� proc�

X

a�d�a��d�

X
a�d�a��d�

X
a�d�a

�
�d�

P �c�m j f� d� d�� k� a� a�� proc��

The summand is independent of the values of a
d and a�
d for either of our
two d�s� In addition� the number of such values is a constant� �It is given by the
product� over all populations not consistent with d� of the number of possible x
each such population could be mapped to�� Therefore� up to an overall constant
independent of d� d�� f � and proc� our sum equals

X
a�d�a��d�

X
a�d�a

�
�d�

P �c�m j f� d� d�� a�d� a��d� � a	d� a�	d� � proc��

By de�nition� we are implicitly restricting the sum to those a and a� so that
our summand is de�ned� This means that we actually only allow one value for
each component in a	d �namely� the value that gives the next x element in d��
and similarly for a�	d� � Therefore our sum reduces to

X
a�d �a

�
�d�

P �c�m j f� d� d�� a�d� a��d�� proc��

	

Note that no component of a�d lies in dx�� The same is true of a��d� � So our
sum over a�d is over the same components of a as the sum over a��d� is of a��
Now for �xed d and d�� proc�s choice of a or a� is �xed� Accordingly� without
loss of generality� we can rewrite our sum as

X
a�d

P �c�m j f� d� d�� a�d��

with the implicit assumption that c�m is set by a�d� This sum is independent
of proc� QED�

�

