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1)   Input space X, and Output space Y.

2) Objective Function   f  :  X →  Y

3) m (distinct) sampled points of f:

dm   =  {dm(1), dm(2), ..., dm(m)}

where ∀  t,

4) Search algorithm a  =

(Typically no repeats allowed.)

5) Real-valued Cost function C(dm)

Obvious extensions to stochastic f, a.

NFL FOR SEARCH - DEFINITIONSNFL FOR SEARCH - DEFINITIONS

€ 

dm (t) = {dm
X (t),dm

Y (t)}

€ 

{dt → dm
X (t +1) : t = 0,..,m}



NFL FOR SEARCH - PRIMARY RESULTNFL FOR SEARCH - PRIMARY RESULT

∀  a, a´, dm

€ 

P(dm
Y

f
∑ | f ,m,a) = P(dm

Y

f
∑ | f ,m,a' )

So for any C(.), and any set of f’s, Φ :

  a beats a´ on all f ∈ Φ

      ⇒

     a´ beats a on F - Φ



NFL FOR SEARCH - PRIMARY RESULTNFL FOR SEARCH - PRIMARY RESULT

∀  a, a´, dm

€ 

P(dm
Y

f
∑ | f ,m,a) = P(dm

Y

f
∑ | f ,m,a' )

1) Same result for many non-uniform averages over f

2) Same result if average over P(f)’s

Must use knowledge about f to choose a. (Saying “real-
world P(f) non-uniform” doesn’t justify any particular a.)



NFL FOR SEARCH - PRIMARY RESULTNFL FOR SEARCH - PRIMARY RESULT

• NFL quantifies real-world luck (“intelligence”) of a:

i) Recall lower C is better.

ii) C ≤ ε   ⇒   our luck in the match of f to a (which we
chose before we saw any data) is at least K(ε).

iii) K(ε) is a function of m, |Y|, and choice of C(.), e.g.,

          ⇒  P(C | m, a) is a Gumbel

distribution for large m. (Use NFL and random a.)

∀  a, a´, dm

€ 

P(dm
Y

f
∑ | f ,m,a) = P(dm

Y

f
∑ | f ,m,a' )

€ 

C(dm ) =mint {dm
Y (t)}



GEOMETRY OF SEARCHGEOMETRY OF SEARCH

where

are both vectors indexed by f€ 

P(dm
Y |m,a) = admY ,m • p

€ 

p = P( f ), admY ,m = P(dm
Y |m,a, f )

1) Similarly for E(C | m, a), etc.

2) Intuition: a must be aligned with P(f) - or else.

3) NFL theorem: All           have same projection on diagonal p

4) All deterministic          have same Euclidean magnitude

€ 

admY ,m

€ 

admY ,m



AVERAGES OVER ALGORITHMSAVERAGES OVER ALGORITHMS

• Rather than fix a and average over f, do the opposite:

1) Let G and H be choosing procedure maps:

{[d (generated by a); d′ (generated by a′ )]}  →   {a, a′ }

2) Let c>m be the costs in a subsequent set of k samples of f.

3) Since the sum is independent of f, all this holds for any P(f).

∀  m, k, G, H,  and any f

€ 

P(c>m
a,a '
∑ | f ,m,k,a,a' ,G) = P(c>m

a,a '
∑ | f ,m,k,a,a' ,H)



AVERAGES OVER ALGORITHMS - 2AVERAGES OVER ALGORITHMS - 2

• Example:

Let G be the procedure “always choose a”,

Let H be the procedure “always choose a´ ”.

• Then the f-independence of the sum implies:

Say that for each y, f1 and f2 have the same total number of
x’s such that f(x) = y. However f1 is “well-behaved” (e.g.
smooth) and f2 is “poorly-behaved” (e.g. jagged).

Say over a set of algorithms S,  f1 gives better performance
than f2.

Then the opposite holds for the remaining algorithms, {a} - S



PAIRWISE DISTINCTIONS  BETWEEN ALGORITHMSPAIRWISE DISTINCTIONS  BETWEEN ALGORITHMS

1) NFL only says first moments over f are a-independent

2) For higher order moments coupling the algorithms, there
are a priori distinctions between algorithms.

3) E.g., there exist a1, a2,                such that

€ 

P(dm,1
Y

f
∑ = z,dm,2

Y = z'| f ,m,a1,a2 ) ≠ P(dm,1
Y = z

f
∑ ',dm,2

Y = z | f ,m,a1,a2 )€ 

dm,1
Y ,dm,2

Y



PAIRWISE DISTINCTIONS  - 2PAIRWISE DISTINCTIONS  - 2

3) However if there is no overlap between               , then

4) On the other hand, there are C(.), a1, a2, δ where

∃  f for which E(C | f, m, a1)  -  E(C | f, m, a2)  =  δ

but

¬∃  f for which E(C | f, m, a2)  -  E(C | f, m, a1)  =  δ

€ 

P(dm,1
Y

f
∑ = z,dm,2

Y = z'| f ,m,a1,a2 ) = P(dm,2
Y

f
∑ = z',dm,1

Y = z | f ,m,a1,a2 )
€ 

dm,1
X ,dm,2

X
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MULTI-ARMED BANDITSMULTI-ARMED BANDITS

1) K “arms”, each a real-valued stochastic process.

2) You know something about the arms.

E.g., each arm is a Gaussian, and all have the same
standard deviation.

3) You sample the arms, one at a time, m times total. You
record those sample values as “rewards”.

4) A strategy maps

(all arm-reward pairs by time t)  →  (next arm)

for all t.

5) What strategy maximizes summed reward at t = m?



SELF-PLAYSELF-PLAY

1) There is an N-player non-cooperative game whose
payoff matrix Γ you don’t fully know.

2) You repeatedly:

i)   Choose the moves (strategies) of all N players;

ii)  Have them play those moves;

iii) Record the resultant payoffs.

3) After this, player 1 (the champion) plays a move for a
new set of N - 1 antagonists whom you don’t control.

4) How best perform (2), and then use its results, to
choose champion’s move for that subsequent game?



CO-EVOLUTIONCO-EVOLUTION

1) N-player non-cooperative game with payoff matrix Γ .

2) In addition to its strategy si, each player i is associated
with a population size or population frequency, ui.

3) There is a fixed function T (perhaps partially
determined by you), mapping

 Γ,   {si(t), ui(t), : i = 1, ..., N}

 →

{si(t + 1), ui(t + 1), : i = 1, ..., N}.

E.g., the replicator dynamics.

5) Analyze this. E.g., what can T guarantee, for any Γ?
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GENERALIZED OPTIMIZATION (GO) FRAMEWORKGENERALIZED OPTIMIZATION (GO) FRAMEWORK

1) Two spaces X and Z.

   E.g., X is inputs, Z is distributions over outputs.

2)    Fitness Function   f  :  X →  Z

3)   m (perhaps repeated) sampled points of f:

dm   =  {dm(1), dm(2), ..., dm(m)}

where ∀  t,

each          a (perhaps stochastic) function of

E.g.,         could be a sample of

E.g.,         could be mean of

E.g.,         could be

€ 

dm (t) = {dm
X (t),dm

Z (t)}

€ 

dm
Z (t)

€ 

f [dm
X (t)]

€ 

dm
Z (t)

€ 

dm
Z (t)

€ 

dm
Z (t)

€ 

f [dm
X (t)]

€ 

f [dm
X (t)]

€ 

f [dm
X (t)]



GO FRAMEWORK - 2GO FRAMEWORK - 2

4) Search algorithm a  =

5) Euclidean vector-valued Cost function C(f, dm)

6) To capture a particular type of optimization problem,
much of the problem structure is expressed in C(., .)

€ 

{dt → dm
X (t +1) : t = 0,..,m}

NFL theorems depend crucially on having C be
independent of f.

If C depends on f, free lunches may be possible.

E.g., have C independent of (f, dm), unless f = f*.



MULTI-ARMED BANDITS IN GO FRAMEWORKMULTI-ARMED BANDITS IN GO FRAMEWORK

1) X is the set of arms.

2) Each z is a Gaussian of known (x-independent)
variance, with unknown (x-varying) mean.

3) Each         is a random sample of the distribution

4) C is independent of f:

5) However the search algorithm allows repeats.

6) Therefore there are free lunches; even without
knowledge about the means of the Gaussian (i.e., about
f’s), some algorithms are preferred.

€ 

dm
Z (t)

€ 

f [dm
X (t)]

€ 

C(dm ) = dm
Z (t)t≤m∑



SELF-PLAY IN GO FRAMEWORKSELF-PLAY IN GO FRAMEWORK

1) For simplicity, take N = 2.

2) X is joint move. For simplicity, deterministic f;
Z is (a delta function about the) payoff to player 1.

(Recall we don’t know payoff function, i.e., f.)

3) We choose the search algorithm a.

4) We also choose a function A(.) mapping our data dm to
the champion’s move for the subsequent game.



SELF-PLAY IN GO - 2SELF-PLAY IN GO - 2

5) More precisely, A’s image is

A set of all x ∈  X, with some particular value of x1 
(which will be our champion’s move).

6) For simplicity, have C(dm, f) reflect worst case behavior
of the antagonist.

7) More precisely,

8) N.b., A(.) is specified in the “cost function” C.
€ 

C(dm , f ) = minx∈A(dm ) f (x)



SELF-PLAY IN GO - 3SELF-PLAY IN GO - 3

9) Since C depends on f, free lunches may be possible

- in fact, they exist.

10) Example:

i) 2 possible moves for opponent, many for champion.

ii) m = 4.

iii) In those 4 games, a selects the 4 moves {(1, x2), (2, x2)}.

iv) A sets x1 to either 1 or 2, depending on which was
maximin superior in the 4 observed game outcomes, dm.

v) A′  sets x1 to whichever was maximin inferior.

E(C | f, m, A, a) ≥  E(C | f, m, A′, a)  ∀ f; a free lunch.
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1)   Input space X, and Output space Y.

2) Target Function   f  :  X →  Y

3) Training set of m sampled points of f:

dm   =  {dm(1), dm(2), ..., dm(m)}

where ∀ t,

4) Learning algorithm for predicting outputs: a  =

5) Real-valued Cost function C[f(.), a(dm , .)]. (Certain formal
restrictions, e.g., off-training set q.)

Obvious extensions to stochastic f, a.

NFL FOR SUPERVISED LEARNING - DEFINITIONSNFL FOR SUPERVISED LEARNING - DEFINITIONS

€ 

(dm , q ∈ X) → Y

€ 

dm (t) = {dm
X (t),dm

Y (t)}



NFL FOR LEARNING - PRIMARY RESULTSNFL FOR LEARNING - PRIMARY RESULTS

∀  a, a´, dm

€ 

P(C
f
∑ | f ,m,a) = P(C

f
∑ | f ,m,a' )

Whether or not you use cross-validation, kernel machines, etc.

There is also an inherent geometry:

where

are both vectors indexed by f
€ 

P(C |m,a) = aC,m • p

€ 

p = P( f ), admY ,m = P(C |m,a, f )
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1) NFL for supervised learning formalizes Hume:

Science cannot give guarantees about future experiments

based on results of previous experiments.

2) Godel’s theorems say math cannot give guarantees

about its own conclusions.

3) No matter what simulation program it runs, no computer can
give guarantees about any future physical experiment.

More generally, no system - even the universe itself - can give
guarantees about prediction, control  or observation.

LIMITS ON MATH, SCIENCE AND BEYONDLIMITS ON MATH, SCIENCE AND BEYOND



1)  Physical limitations of computational systems
• Landauer’s law, reversible computation, etc.

2)  Computational limitations of physical systems
•  How fast / large can computation be while consistent
    with the fundamental laws of physics.

3)  More profoundly, might the universe be a computer?
 •  Wheeler: “It from bit”

Difficulty: Chomsky hierarchy ill-suited to (3). What would it
mean for universe to “be” a tape with a read/write head?

COMPUTATION AND PHYSICSCOMPUTATION AND PHYSICS

Solution: Formalize computation - more generally
inference - as actually done in physical systems.



1) What α contains/contained the universe’s worldline u at t´?

    • The possible answers (outputs) of my computer themselves ...
form a partition of U. (The computer lives in the universe.)

2) Must tell my computer what program it should run.

• Those possible inputs to the computer form a partition of U.

PREDICTION (REMEMBERING)PREDICTION (REMEMBERING)

u ∈ U

t

α1

α2

Computer = (input partition, output partition)

now t´



1) An input partition   X : u →  x, the label of the input.

2) An output partition   Y : u →  (A, α ∈ A), the pair of a set of
possible answers, and an element of that set.

3) An inference device C is such a pair (X, Y).

Observation devices, control devices, computers:
all are inference devices.

INFERENCE DEVICESINFERENCE DEVICES

u ∈ U

α1

α2



1) The universe may contain one device that can predict the rest of
the universe -  but no more than one.

2) If you have many distinguishable devices, at most one can infer
all the others: a God device.

   I.e., at most one device that can (infallibly) observe / predict /
         control all distinguishable others: “Monotheism”.

3) A time-translated copy of a God device cannot be a God device.

   I.e., God can only be infallible once: “Intelligent design”.

IMPOSSIBILITY OF INFERENCEIMPOSSIBILITY OF INFERENCE

•   No device can infer itself.

•   No two distinguishable devices can infer each other



1) For any device simulating physical systems, there is always a
prediction by it that cannot be guaranteed correct.

(Even if just simulating external universe, if the simulator isn’t a
God device, always a prediction by it that can’t be guaranteed.)

• Laplace was wrong.

2)  For any recording apparatus, there is always a past event that
cannot be guaranteed to have been correctly recorded.

3) For any observation apparatus, there is always an observation by
it that cannot be guaranteed to be correct.

• Non-quantum mechanical “uncertainty principle”

ENGINEERING IMPLICATIONS OF IMPOSSIBILITYENGINEERING IMPLICATIONS OF IMPOSSIBILITY
RESULTRESULT



1) Much still to be investigated about search:

i) P(f)-independent results (e.g., algorithm averages).

ii) The geometry of search

iii) A priori distinctions between search algorithms -

     higher order correlations.

2) Much still to be investigated about supervised learning:

i) Relation between NFL and statistical learning theory

ii) A priori distinctions between learning algorithms -

    cross-validation vs. anti-cross-validation?

3) Much still to be investigated about inference devices:

i) Analogs of algorithmic information complexity

ii) Graphical relations between inference devices.

CONCLUSIONSCONCLUSIONS


